发表评论取消回复
相关阅读
相关 【机器学习】二、决策树
目录 一、决策树定义: 二、决策树特征选择 2.1 特征选择问题 2.2 信息增益 2.2.1 熵 2.2.2 信息增益 三、决策树的生成 3.1 ID3算
相关 《机器学习》(二)决策树算法
一、ID3算法 ID3算法的核心要义是在决策树各个结点上应用信息增益准则选择最好的特征,递归地构建决策树。具体方法是:从根结点开始,对结点计算所有可能的特征的信息增益,选
相关 决策树算法(二)
![20191009191333910.png][][日萌社][Link 1] [人工智能AI:Keras PyTorch MXNet TensorFlow Pad
相关 机器学习算法详解之决策树(二)
目录 生成决策树模型的递归什么时候停止 如果让递归一直持续下去 剪枝处理 前剪枝 后剪枝 样本数据的处理 离散化 缺失值处理 回顾经典决策树CART、ID3
相关 决策树详解(三)
训练决策树有三个关键问题: 1.对于分类树,大量的正常数据在其中之混杂着一个两个的异常数据,所以分类结果很可能认为出现的数据都是正常的。 为了避免这种情况的出现,我们设
相关 决策树详解(二)
我们根据样本响应值是类的形式还是数值的形式,把决策树分为分类树与回归树。 表示特征属性的形式,也分为类的形式或者数值形式。 什么是表示特征属性的形式:
相关 决策树
熵的定义 ![5057999-5702853710d12e87.png][] 计算给定数据集的熵 def calcShannonEnt(dataSet):
还没有评论,来说两句吧...