发表评论取消回复
相关阅读
相关 【线性代数(8)】矩阵行列式、伴随矩阵、逆矩阵
逆矩阵 1 矩阵行列式 2 伴随矩阵 3 逆矩阵 3.1 逆矩阵概念 3.2 逆矩阵的性质 手动反爬虫: [原博地址]
相关 MIT 线性代数导论 第十七讲:正交矩阵和Graham-Shcimidt正交化
本讲的主要内容: 正交向量组以及正交基的概念 正交矩阵 Graham-Schimidt正交化的方法 正交向量组、正交基以及正交矩阵 再上一讲中,讲到
相关 MIT 线性代数导论 第七讲:Ax=0求解
本讲的主要内容有: 计算 A x = 0 Ax=0 Ax=0 的解(求零空间) 理解主变量以及自由变量的概念 A x = 0 Ax=0 Ax=0 的特殊
相关 MIT 线性代数导论 第四讲:矩阵的LU分解
这一讲的主要内容有: 矩阵转置与逆的顺序问题 矩阵 A A A 的 L U LU LU 分解 置换矩阵群 矩阵转置与逆 首先关于矩阵的分解要用到几
相关 MIT 线性代数导论 第三讲:矩阵乘法与逆矩阵
为了以后自己看的明白(●’◡’●),我决定对复杂的计算过程不再用Latex插入数学公式了(记得不熟的实在是太费劲了,还是手写好~) 第三讲的主要内容有两个: 四种矩阵
相关 MIT 线性代数导论 第二讲:矩阵消元
第二讲的主要内容: 线性方程组的消元法 使用矩阵语言表示消元过程 向量、矩阵乘的理解 置换矩阵的概念 初步逆矩阵的概念 线性方程组的消元法
相关 MIT 线性代数导论 第十六讲:投影矩阵和最小二乘
本讲的主要内容: 简单回顾前一讲中的投影矩阵的概念 结合例子具体说明最小二乘 证明 A T A A^\{T\}A ATA 是可逆的 回顾 上一讲的
相关 MIT 线性代数导论 第十一讲:矩阵空间、秩1矩阵和小世界图
本讲的主要内容有: 矩阵空间的具体概念 秩1矩阵的概念以及性质 小世界图 矩阵空间 在之前的一讲中提到了矩阵空间的概念,其实本质上与之前的向量空间是
相关 MIT 线性代数导论 第十六讲:投影矩阵和最小二乘
本讲的主要内容: 简单回顾前一讲中的投影矩阵的概念 结合例子具体说明最小二乘 证明 A T A A^\{T\}A ATA 是可逆的 回顾 上一讲的
相关 MIT 线性代数导论 第二十二讲:矩阵对角化和幂
本讲的主要内容 对角化矩阵的概念以及方法 计算矩阵的幂的对角化方法 几个例子 对角化矩阵、计算矩阵的幂 对于一个有 n n n 个不同特征向量(其
还没有评论,来说两句吧...