决策树
1 认识决策树
如何高效的进行决策?
特征的先后顺序(哪个特征先看,哪个特征后看)
2 决策树分类原理详解(看哪个特征能筛掉更多的数据,尽可能通过少的决策,达到目的)
已知 四个特征值 预测 是否贷款给某个人
先看房子,再工作 -> 是否贷款 只看了两个特征
年龄,信贷情况,工作 看了三个特征
信息论基础
1)信息
香农:消除随机不定性的东西
小明 年龄 “我今年18岁” - 信息
小华 ”小明明年19岁” - 不是信息
2)信息的衡量 - 信息量 - 信息熵
单位:bit
计算公式:g(D,A) = H(D) - 条件熵H(D|A)
4 决策树的划分依据之一———信息增益
3 决策树可视化
4 决策树总结
优点:可视化 - 可解释能力强
缺点:容易产生过拟合
5 案例:泰坦尼克号乘客生存预测
流程分析:
特征值 目标值
1)获取数据
2)数据处理
缺失值处理
特征值 -> 字典类型
3)准备好特征值 目标值
4)划分数据集
5)特征工程:字典特征抽取
6)决策树预估器流程
7)模型评估
#
代码:
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
from sklearn.tree import DecisionTreeClassifier, export_graphviz
def decision_iris():
"""
用决策树对鸢尾花进行分类
:return:
"""
# 1)获取数据集
iris = load_iris()
# 2)划分数据集
x_train, x_test, y_train, y_test = train_test_split(iris.data, iris.target, random_state=22)
# 3)决策树预估器
estimator = DecisionTreeClassifier(criterion="entropy")
estimator.fit(x_train, y_train)
# 4)模型评估
# 方法1:直接比对真实值和预测值
y_predict = estimator.predict(x_test)
print("y_predict:\n", y_predict)
print("直接比对真实值和预测值:\n", y_test == y_predict)
# 方法2:计算准确率
score = estimator.score(x_test, y_test)
print("准确率为:\n", score)
# 可视化决策树
export_graphviz(estimator, out_file="iris_tree.dot", feature_names=iris.feature_names)
return None
if __name__ == "__main__":
decision_iris()
还没有评论,来说两句吧...