决策树 小咪咪 2022-04-23 01:16 253阅读 0赞 1 认识决策树 如何高效的进行决策? 特征的先后顺序(哪个特征先看,哪个特征后看) 2 决策树分类原理详解(看哪个特征能筛掉更多的数据,尽可能通过少的决策,达到目的) 已知 四个特征值 预测 是否贷款给某个人 先看房子,再工作 -> 是否贷款 只看了两个特征 年龄,信贷情况,工作 看了三个特征 信息论基础 1)信息 香农:消除随机不定性的东西 小明 年龄 “我今年18岁” - 信息 小华 ”小明明年19岁” - 不是信息 2)信息的衡量 - 信息量 - 信息熵 单位:bit 计算公式:g(D,A) = H(D) - 条件熵H(D|A) 4 决策树的划分依据之一------信息增益 3 决策树可视化 4 决策树总结 优点:可视化 - 可解释能力强 缺点:容易产生过拟合 5 案例:泰坦尼克号乘客生存预测 流程分析: 特征值 目标值 1)获取数据 2)数据处理 缺失值处理 特征值 -> 字典类型 3)准备好特征值 目标值 4)划分数据集 5)特征工程:字典特征抽取 6)决策树预估器流程 7)模型评估 ## ## ### 代码: ### from sklearn.datasets import load_iris from sklearn.model_selection import train_test_split from sklearn.tree import DecisionTreeClassifier, export_graphviz def decision_iris(): """ 用决策树对鸢尾花进行分类 :return: """ # 1)获取数据集 iris = load_iris() # 2)划分数据集 x_train, x_test, y_train, y_test = train_test_split(iris.data, iris.target, random_state=22) # 3)决策树预估器 estimator = DecisionTreeClassifier(criterion="entropy") estimator.fit(x_train, y_train) # 4)模型评估 # 方法1:直接比对真实值和预测值 y_predict = estimator.predict(x_test) print("y_predict:\n", y_predict) print("直接比对真实值和预测值:\n", y_test == y_predict) # 方法2:计算准确率 score = estimator.score(x_test, y_test) print("准确率为:\n", score) # 可视化决策树 export_graphviz(estimator, out_file="iris_tree.dot", feature_names=iris.feature_names) return None if __name__ == "__main__": decision_iris()
相关 决策树 [https://www.cnblogs.com/lovephysics/p/7231294.html][https_www.cnblogs.com_lovephysics_p 今天药忘吃喽~/ 2022年12月20日 02:22/ 0 赞/ 28 阅读
相关 决策树 1 决策树学习是以实例为基础的归纳学习算法,是应用最广泛的逻辑方法。 2 典型的决策树学习系统采用自顶向下的方法,在部分搜索空间中搜索解决方案。它可以确保求出一个简单的决策树 桃扇骨/ 2022年06月14日 04:27/ 0 赞/ 293 阅读
相关 决策树 决策树是基于树结构来进行决策,这恰是人类在面临决策问题时一种很自然的处理机制。例如,我们要对“这是好瓜吗?”这样的问题进行决策时,通常会进行一系列的判断或“子决策”:我们先看“ 旧城等待,/ 2022年05月25日 05:39/ 0 赞/ 364 阅读
相关 决策树 一、 决策树简介 决策树是一种特殊的树形结构,一般由节点和有向边组成。其中,节点表示特征、属性或者一个类。而有向边包含有判断条件。如图所示,决策树从根节点开始延伸,经过不 骑猪看日落/ 2022年05月17日 00:55/ 0 赞/ 325 阅读
相关 决策树 决策树:决策树是一个树形结构,每个非叶节点表示一个特征树形的测试,每个分支代表这个特征属性在某个值域上的输出,而叶节点存放一个类别。 使用决策树进行决策的原理就是: 从根 淩亂°似流年/ 2022年05月13日 08:50/ 0 赞/ 265 阅读
相关 决策树 1 认识决策树 如何高效的进行决策? 特征的先后顺序(哪个特征先看,哪个特征后看) 2 决策树分类原理详解(看哪个特征能筛掉更多的数据,尽可能通过少 小咪咪/ 2022年04月23日 01:16/ 0 赞/ 254 阅读
相关 决策树 决策树 声明 本文是来自网络文档和书本(周老师)的结合。 概述 决策树(Decision Tree)是在已知各种情况发生概率的[基础][Link 1]上,通 青旅半醒/ 2022年01月30日 06:49/ 0 赞/ 497 阅读
相关 决策树 决策树对实例进行分类的树形结构,由节点和有向边组成。其实很像平时画的流程图。 学习决策树之前要搞懂几个概念: 熵:表示随机变量不确定性的度量,定义:H(p)=-![1409 冷不防/ 2021年09月30日 04:16/ 0 赞/ 525 阅读
相关 决策树 熵的定义 ![5057999-5702853710d12e87.png][] 计算给定数据集的熵 def calcShannonEnt(dataSet): 客官°小女子只卖身不卖艺/ 2021年09月15日 06:34/ 0 赞/ 475 阅读
还没有评论,来说两句吧...