发表评论取消回复
相关阅读
相关 【机器学习】朴素贝叶斯算法:多项式、高斯、伯努利,实例应用(心脏病预测)
1. 朴素贝叶斯模型 对于不同的数据,我们有不同的朴素贝叶斯模型进行分类。 1.1 多项式模型 (1)如果特征是离散型数据,比如文本这些,推荐使用多项式模型来实现
相关 机器学习-朴素贝叶斯
朴素贝叶斯介绍 朴素贝叶斯法是基于贝叶斯定理与特征条件独立假设的分类方法。之所以叫朴素,是因为朴素贝叶斯法对条件概率分布作了条件独立性的假设。朴素贝叶斯法是典型的生成学习
相关 机器学习算法之朴素贝叶斯算法
算法原理 条件概率 条件概率表示在B=b成立的条件下,A=a的概率,记作P(A=a|B=b),或者说条件概率是指事件A=a在另外一个事件B=b已经发生的条件下的概率
相关 朴素贝叶斯算法
利用朴素贝叶斯算法来对评价的好坏进行分类: 原始数据为: ![watermark_type_ZmFuZ3poZW5naGVpdGk_shadow_10_text_aHR0c
相关 朴素贝叶斯算法
1 概率基础 联合概率、条件概率与相互独立定义 联合概率:包含多个条件,且所有条件同时成立的概率 P(程序员, 匀称) P(程序员, 超重|
相关 朴素贝叶斯算法
理论: P(X|Y) = P(X,Y)/P(Y) P(X,Y) = P(X|Y)P(Y) P(X,Y) = P(Y|X)P(X) 由此推导出朴素贝叶斯公式:
相关 机器学习算法01 - 朴素贝叶斯
朴素贝叶斯 > 朴素贝叶斯分类 ![debcda91831caefd356d377ddd1aad10.png][] ![2e2962ddb7e85a71e0cecb9
相关 sklearn模块之朴素贝叶斯:(二)伯努利模型的实现
多元Bernoulli模型的朴素贝叶斯分类器适用于`离散数据`。与MultinomialNB不同之处为: MultinomialNB使用出现次数(`频数`)
还没有评论,来说两句吧...