发表评论取消回复
相关阅读
相关 【机器学习】朴素贝叶斯算法:多项式、高斯、伯努利,实例应用(心脏病预测)
1. 朴素贝叶斯模型 对于不同的数据,我们有不同的朴素贝叶斯模型进行分类。 1.1 多项式模型 (1)如果特征是离散型数据,比如文本这些,推荐使用多项式模型来实现
相关 朴素贝叶斯模型
贝叶斯法则/贝叶斯定律/定理: P(Y|X)=P(X|Y) P(Y) / P(X) 在某个背景证据 e 上使用一个更加通用版本的条件化公式: P(Y|X,e)=P(X|Y
相关 sklearn模块之朴素贝叶斯:(一)多项式模型的实现
sklearn模块全称为`scikit-learn`,是机器学习和人工智能领域最知名的模块之一。它提供了非常丰富的机器学习方法函数,详情可以参考[scikit-learn官
相关 sklearn模块之朴素贝叶斯:(二)伯努利模型的实现
多元Bernoulli模型的朴素贝叶斯分类器适用于`离散数据`。与MultinomialNB不同之处为: MultinomialNB使用出现次数(`频数`)
相关 朴素贝叶斯模型 多元伯努利事件模型+多项式事件模型 Multi-Variate Bernoulli Event Model and Multinomial Event Model
朴素贝叶斯模型(Naïve Bayes Models): 适用于离散分布的朴素贝叶斯模型是个概率模型、生成式模型、广泛用于文本分类,自然语言处理和模式识别。 生成式和
还没有评论,来说两句吧...