发表评论取消回复
相关阅读
相关 03人工智能-反向传播
前面阐述过,在设计好一个神经网络后,参数的数量可能会达到百万级别,利用梯度下降去更新参数计算复杂,算力不足,因此需要一种有效计算梯度的方法,这种方法就是辛顿提出的反向传播(简称
相关 手推反向传播+numpy实现
反向传播的重要性不必多说,手推也是必备基础,大厂面试要求用numpy实现一下BP也是经常的事。下面以一个简单的两层网络为例(简单到连bias都没有的那种),真·手推反向传播+n
相关 实现Pooling层的前向传播与反向传播
第一次学习,看的这个视频教程实在觉得不好,这个过程也不是很理解,以后我会结合相关书籍和视频课程继续学习,遇到好的一定会为大家推荐 (这是我的一个不太理解的过程=^=!)
相关 pytorch 反向传播机制
[https://blog.csdn.net/baidu\_36161077/article/details/81435627][https_blog.csdn.net_bai
相关 手写BP(反向传播)算法
BP算法为深度学习中参数更新的重要角色,一般基于loss对参数的偏导进行更新。 一些根据均方误差,每层默认激活函数sigmoid(不同激活函数,则更新公式不一样) 假设网络
相关 Back propagation反向传播
Back propagation反向传播 文章目录 Back propagation反向传播 链式求导法则 ![558EF1F
相关 反向传播算法详解
简介 BP算法,称“误差逆传播算法”,亦称“反向传播算法”,是迄今为止用得最多的多层神经网络学习算法。用BP算法训练的多层前馈神经网络称为“BP网络”。 算法流程
相关 神经网络--反向传播(手算)
![70][] ![70 1][] ![70 2][] [70]: /images/20220505/81b1c8301ea640a2b584dd4ade256e
相关 tensorflow 实现自定义梯度反向传播
以sign函数为例: ![70][] sign函数可以对数值进行二值化,但在梯度反向传播是不好处理,一般采用一个近似函数的梯度作为代替,如上图的Htanh。在\[-1
还没有评论,来说两句吧...