发表评论取消回复
相关阅读
相关 【目标检测】池化层(pooling)的反向传播是怎么实现的
目录:池化层的反向传播是怎么实现的 一、前言 二、平均池化 二、最大池化 四、最大池化的数学原理 一、前言 卷积神经网络中一个不可导的环节
相关 神经网络前向传播和反向传播公式推导(公式+图解)
以如下的预测是否是猫的双层神经网络为例进行公式推导: ![watermark_type_ZmFuZ3poZW5naGVpdGk_shadow_10_text_aHR0cHM6
相关 前向传播、反向传播(后向传播)、梯度下降、导数、链式法则
![20191009191333910.png][][日萌社][Link 1] [人工智能AI:Keras PyTorch MXNet TensorFlow Paddle
相关 实现Pooling层的前向传播与反向传播
第一次学习,看的这个视频教程实在觉得不好,这个过程也不是很理解,以后我会结合相关书籍和视频课程继续学习,遇到好的一定会为大家推荐 (这是我的一个不太理解的过程=^=!)
相关 深度学习基础------前向传播与反向传播
当前,深度学习已经应用到很多领域:无人驾驶汽车,黑科技以及图像分类等等,这些前沿的科技也面临许多挑战,如无人驾驶汽车需要进行物体的检测、行人的检测、标志的识别以及速度识别等等;
相关 使用前向传播和反向传播的神经网络代码
完整代码可从[https://github.com/TimeIvyace/Basic-neural-network.git][https_github.com_TimeIvya
相关 前向传播算法(Forward propagation)与反向传播算法(Back propagation)以及sigmoid函数介绍
前向传播算法(Forward propagation)与反向传播算法(Back propagation)以及sigmoid函数介绍 虽然学深度学习有一段时间了,但是对于一些
相关 CNN网络中池化层的正向传播与反向传播理解
1. 池化定义 通常来说卷积之后的图像虽然在尺寸上有所减小,但是其尺寸还是较大,为了描述大的图像,一个很自然的想法就是对不同位置的特征进行聚合统计,例如,人们可以计算图像
相关 CNN网络中卷积层的正向传播与反向传播理解
1. 基础理论 1.1 网络结构梳理 在CNN网络模型是建立在传统神经网络结构上的,对于一个传统的神经网络其结构是这样的: ![这里写图片描述][70] 从
还没有评论,来说两句吧...