发表评论取消回复
相关阅读
相关 【机器学习】一、机器学习概述与模型的评估、选择
机器学习简介 由来 阿瑟.萨缪尔Arthur Samuel,1952年研制了一个具有自学习能力的西洋跳棋程序,1956年应约翰.麦卡锡John McCarthy(人
相关 【机器学习】综述:机器学习中的模型评价、模型选择与算法选择
文章目录 一、前言 二、论文摘要 三、简介:基本的模型评估项和技术 3.1 性能评估:泛化性能 vs. 模型选择 四、Bootstra
相关 机器学习-02 模型的评估与选择
2.1 误差与过拟合 我们将学习器对样本的实际预测结果与样本的真实值之间的差异成为:误差(error)。定义: 在训练集上的误差称为训练误差(training e
相关 机器学习之模型评估与模型选择(学习笔记)
时间:2014.06.26 地点:基地 \-----------------------------------------------------------------
相关 机器学习模型选择:调参参数选择
http://[blog.csdn.net/pipisorry/article/details/52902797][blog.csdn.net_pipisorry_articl
相关 机器学习之Validation(验证,模型选择)
对于机器学习的模型选择来说,即使只是对于二元分类,我们已经学习了很多方法,比如PLA,LR等;很多学习算法都是可迭代的,需要决定迭代次数;你可能还需要决定每一次迭代走多大,
相关 机器学习之Validation(验证,模型选择)
对于机器学习的模型选择来说,即使只是对于二元分类,我们已经学习了很多方法,比如PLA,LR等;很多学习算法都是可迭代的,需要决定迭代次数;你可能还需要决定每一次迭代走多大,
相关 机器学习之算法模型评价指标
机器学习评价指标 1、几个概念 精确率:Precision——”正确被检索的item(TP)”占所有”实际被检索到的(TP+FP)”的比例 召回率:Recall—
相关 机器学习之模型评估与选择
经验误差与泛化误差 通常我们把分类错误的样本数占样本总数的比例称为“错误率”(error rate),即如果在m个样本中有a个样本分类错误,则错误率E=a/m;相
还没有评论,来说两句吧...