发表评论取消回复
相关阅读
相关 【机器学习】综述:机器学习中的模型评价、模型选择与算法选择
文章目录 一、前言 二、论文摘要 三、简介:基本的模型评估项和技术 3.1 性能评估:泛化性能 vs. 模型选择 四、Bootstra
相关 mllib调参 spark_Spark 模型选择和调参
Spark - ML Tuning 这一章节主要讲述如何通过使用MLlib的工具来调试模型算法和pipeline,内置的交叉验证和其他工具允许用户优化模型和pipeline中
相关 Scikit-learn:模型选择之调参grid search
http://[blog.csdn.net/pipisorry/article/details/52268947][blog.csdn.net_pipisorry_articl
相关 机器学习模型选择:调参参数选择
http://[blog.csdn.net/pipisorry/article/details/52902797][blog.csdn.net_pipisorry_articl
相关 机器学习之Validation(验证,模型选择)
对于机器学习的模型选择来说,即使只是对于二元分类,我们已经学习了很多方法,比如PLA,LR等;很多学习算法都是可迭代的,需要决定迭代次数;你可能还需要决定每一次迭代走多大,
相关 机器学习之Validation(验证,模型选择)
对于机器学习的模型选择来说,即使只是对于二元分类,我们已经学习了很多方法,比如PLA,LR等;很多学习算法都是可迭代的,需要决定迭代次数;你可能还需要决定每一次迭代走多大,
相关 Spark机器学习之模型选择和超参数调整
模型选择(超参数调谐) ML中的一个重要任务是模型选择,或使用数据找到给定任务的最佳模型或参数。 这也叫调音。 可以针对个体估算器(如Logistic回归)或包括多个算
相关 机器学习之模型评估与选择
经验误差与泛化误差 通常我们把分类错误的样本数占样本总数的比例称为“错误率”(error rate),即如果在m个样本中有a个样本分类错误,则错误率E=a/m;相
相关 [机器学习]模型调参
一、问题描述 当我们在处理图像识别或者图像分类或者其他机器学习任务的时候,我们总是迷茫于做出哪些改进能够提升模型的性能(识别率、分类准确率)。。。或者说我们在漫长而苦恼的
还没有评论,来说两句吧...