发表评论取消回复
相关阅读
相关 论文笔记《ImageNet Classification with Deep Convolutional Neural Networks》
AlexNet在ImageNet LSVRC-2012上取得了top-1 和top-5错误率分别为37.5%和17.0%的好成绩,获得了冠军。它使用的神经网络有600000个参
相关 《Learning Efficient Convolutional Networks through Network Slimming》论文笔记
代码地址:[slimming][] 1. 概述 > 导读:这篇文章是一篇关于CNN网络剪枝的文章,文章里面提出通过BatchNorm层的scaling参数确定重要的ch
相关 论文笔记-IGCV3:Interleaved Low-Rank Group Convolutions for Efficient Deep Neural Networks
论文笔记-IGCV3:Interleaved Low-Rank Group Convolutions for Efficient Deep Neural Networks
相关 论文品读:Pruning Convolutional Neural Networks for Resource Efficient Inference
模型裁剪系列相关论文品读博客: 1.论文品读:Learning both Weights and Connections for Efficient Neural Ne
相关 《Soft Filter Pruning for Accelerating Deep Convolutional Neural Networks》论文笔记
1. 概述 这篇文章中给出了一种叫作SFP(Soft Filter Pruning),它具有如下两点优点: 1)Larger model capacity。相比直接剪
相关 MobileNets -Efficient Convolutional Neural Networks for Mobile Vision Applications 论文解读
MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications aut
相关 ShuffleNet - An Extremely Efficient Convolutional Neural Network for Mobile 论文解读
ShuffleNet: An Extremely Efficient Convolutional Neural Network for Mobile conf & auth
相关 《MobileNets v1: Efficient Convolutional Neural Networks for Mobile Vision Applications》论文笔记
1. 概述 > 导读:这篇文章为移动和嵌入式设备应用提供了一个搞笑的网络模型MobileNets。该网络是使用depthwise分离卷积构建轻量级的神经网络。期间引入了两
相关 《ShuffleNet v1:An Extremely Efficient Convolutional Neural Network for Mobile》论文笔记
1. 概述 > 导读:这篇文章采用分组卷积(pointwise group convolution)与通道混合(channel shuffle)操作构造了一个新的轻量级网
相关 论文笔记:GVCNN: Group-View Convolutional Neural Networks for 3D Shape Recognition
GVCNN: Group-View Convolutional Neural Networks for 3D Shape Recognition 1、四个问题 1.
还没有评论,来说两句吧...