发表评论取消回复
相关阅读
相关 论文笔记《ImageNet Classification with Deep Convolutional Neural Networks》
AlexNet在ImageNet LSVRC-2012上取得了top-1 和top-5错误率分别为37.5%和17.0%的好成绩,获得了冠军。它使用的神经网络有600000个参
相关 论文笔记-IGCV3:Interleaved Low-Rank Group Convolutions for Efficient Deep Neural Networks
论文笔记-IGCV3:Interleaved Low-Rank Group Convolutions for Efficient Deep Neural Networks
相关 《DMCP:Differentiable Markov Channel Pruning for Neural Networks》论文笔记
参考代码:[dmcp][] 1. 概述 > 导读:在网络剪枝领域中已经有一些工作将结构搜索的概念引入到剪枝方法中,如AMC使用强化学习的方式使控制器输出每一层的裁剪比例
相关 《Channel Pruning for Accelerating Very Deep Neural Networks》论文笔记
1. 概述 这篇文章提出了一种基于LASSO回归的通道选择和最小二乘重构的迭代两步算法,有效地对每一层进行修剪。并进一步将其推广到多层和多分枝的场景下。论文中的方法能够减
相关 论文品读:Pruning Convolutional Neural Networks for Resource Efficient Inference
模型裁剪系列相关论文品读博客: 1.论文品读:Learning both Weights and Connections for Efficient Neural Ne
相关 《Soft Filter Pruning for Accelerating Deep Convolutional Neural Networks》论文笔记
1. 概述 这篇文章中给出了一种叫作SFP(Soft Filter Pruning),它具有如下两点优点: 1)Larger model capacity。相比直接剪
相关 《Learning to Prune Filters in Convolutional Neural Networks》论文笔记
1. 概述 这篇文章提出了一种“try-and-learn”的算法去训练pruning agent,并用它使用数据驱动的方式去移除CNN网络中多余的filters。借助新
相关 论文品读:Stability Based Filter Pruning for Accelerating Deep CNNs
2018年的论文,提出了一种新的评价卷积核重要程度的方式。 主要思想是比较改变损失函数前后训练得到的两套参数,如果某个位置的参数改变的幅度大,就认为该参数是敏感的不稳定的,那
相关 [剪枝]Channel Pruning for Accelerating Very Deep Neural Networks
\[ICCV2017\] Channel Pruning for Accelerating Very Deep Neural Networks arxiv:[https
相关 《EfficientNet:Rethinking Model Scaling for Convolutional Neural Networks》论文笔记
代码地址:[EfficientNet-PyTorch][] 1. 概述 > 导读:一般来讲CNN网络被设计拥有固定的资源开销,要是在资源允许的条件下可以通过增加网络深度
还没有评论,来说两句吧...