发表评论取消回复
相关阅读
相关 深度学习调参经验
前言笔者接触深度学习一年多了,阅读不少的CV论文,也敲了不少代码。当复现论文时,paper作者有时候不会给一些超参数以及调参经验,就得靠自己去揣摩了。调参是个技术活,快速...
相关 调参经验: 关于deep learning(rnn、cnn)
> 点击上方“机器学习与生成对抗网络”,关注星标 > > 获取有趣、好玩的前沿干货! https://www.zhihu.com/question/330766768 编
相关 LightGBM参数调优 LightGBM调参经验
对比参考 ![watermark_type_ZHJvaWRzYW5zZmFsbGJhY2s_shadow_50_text_Q1NETiBA5Y-q6KaB5byA5aeL5r
相关 xgboost 调参经验
本文介绍三部分内容: \- xgboost 基本方法和默认参数 \- 实战经验中调参方法 \- 基于实例具体分析 1.xgboost 基本方法和默认参数 在
相关 XGBoost-Python完全调参指南-参数解释篇
[原文:][Link 1] 在analytics vidhya上看到一篇<Complete Guide to Parameter Tuning in XGBoost in [
相关 XGBoost调参指南
XGBoost调参指南 [参考-官网][-] 方法1 可按照max\_depth, min\_child\_weight colsamplt\_bytree,et
相关 XGboost数据比赛实战之调参篇(完整流程)
这一篇博客的内容是在上一篇博客 [Scikit中的特征选择,XGboost进行回归预测,模型优化的实战][Scikit_XGboost] 的基础上进行调参优化的,所以在阅读本篇
相关 RNN的调参经验们
[https://www.zhihu.com/question/41631631][https_www.zhihu.com_question_41631631] [https
相关 【机器学习】XGBoost 原理及调参指南 整理
XGBoost XGBoost能自动利用cpu的多线程,而且适当改进了gradient boosting,加了剪枝,控制了模型的复杂程度 传统GBDT以CART作为基
相关 XGBOOST应用及调参示例
该示例所用的数据可从[该链接][Link 1]下载,提取码为3y90,数据说明可参考[该网页][Link 2]。该示例的“模型调参”这一部分引用了[这篇博客][Link 3]的
还没有评论,来说两句吧...