发表评论取消回复
相关阅读
相关 论文笔记《Very Deep Convolutional Networks for Large-Scale Image Recognition》
VGGNet在2014年的ILSVRC竞赛上,获得了top-1 error的冠军和top-5 error的第二名,错误率分别为24.7%和7.3%,top-5 error的第一
相关 VGG_Very Deep Convolutional Networks For Large-Scale Image Recognition翻译
![1598479-20190917155018712-1681639433.png][] 转载于:https://www.cnblogs.com/yunshangyu
相关 【VGGNet】Very Deep Convolutional Networks For Large-Scale Image Recognition (2014) 全文翻译
作者 Karen Simonyan∗ & Andrew Zisserman+ (Visual Geometry Group, Department of Engine
相关 (VGG)Very Deep Convolutional Networks for Large-Scale Image Recognition
Very Deep Convolutional Networks for Large-Scale Image Recognition 文章目录
相关 【Paper Note】Convolutional Clustering for Unsupervised Learning 论文理解
前言 ![Center][] 我们接触的大多数深度神经网络都需要大量的含有标签的数据作为输入,通过成千上万次的迭代训练,使神经网络模型学习到特征规则,从而完成生成
相关 【Paper Note】Very Deep Convolutional Network For Large-Scale Image Recognition 论文翻译(VGG)
![Center][] 摘要 在这项工作中,我们调研了在大规模图片识别问题上卷积核的深度对其准确率的影响,我们主要的贡献在于通过使用非常小(3x3)的卷积核来增加评价网
相关 【Paper Note】Very Deep Convolutional Networks for Large-Scale Image Recognition——VGG(论文理解)
前言 VGG网络于2014年被提出,在ImageNet数据集上面获得了定位项目的第一名和分类项目的第二名,虽然在2014年被提出的GoogLeNet网络在定位项目之外的其
相关 Scale-recurrent Network for Deep Image Deblurring 阅读理解
Scale-recurrent Network for Deep Image Deblurring 2018CVPR 腾讯优图出品 code [https://githu
相关 《Soft Filter Pruning for Accelerating Deep Convolutional Neural Networks》论文笔记
1. 概述 这篇文章中给出了一种叫作SFP(Soft Filter Pruning),它具有如下两点优点: 1)Larger model capacity。相比直接剪
相关 Unet论文详解U-Net:Convolutional Networks for Biomedical Image Segmentation
背景:Unet结构在分割,重建以及GAN等网络之中被广泛采用,非常经典。网络于2015年5月提出,在后续图像分割领域广泛运用。 论文地址 [https://arxiv.or
还没有评论,来说两句吧...