发表评论取消回复
相关阅读
相关 神经网络中的激活函数
文章目录 为什么要使用激活函数 常用的激活函数 如何选择激活函数 ReLU激活函数的优点及局限性 为什么Sigmoid和Tanh会导致梯度消
相关 神经网络的损失函数讲解
在应用python进行神经网络训练时,我们需要提供神经网络。如Keras中, ![2020102714551132.png][] 定义:在深度学习中。损失函数是用来衡量一
相关 神经网络五:常用的激活函数
本文就现在神经网络中主要的几个激活函数进行分析和讲解,比较几个激活函数的优缺点。在此特声明,本文的内容是来自:CS231n课程笔记翻译:神经网络笔记1(上) - 智能单元 -
相关 理解激活函数在神经网络模型构建中的作用
什么是激活函数 在生物学家研究大脑神经元工作机理时,发现如果一个神经元开始工作时,该神经元是一种被激活的状态,我想着大概就是为什么神经网络模型中有一个单元叫做激活函数。
相关 理解交叉熵作为损失函数在神经网络中的作用
交叉熵的作用 通过神经网络解决多分类问题时,最常用的一种方式就是在最后一层设置n个输出节点,无论在浅层神经网络还是在CNN中都是如此,比如,在AlexNet中最后的输出层
相关 神经网络激励函数的作用
这是一个单层的感知机, 也是我们最常用的神经网络组成单元啦. 用它可以划出一条线, 把平面分割开 ![这里写图片描述][SouthEast] 那么很容易地我们就会想用多
相关 理解神经网络中的目标函数
> 译者注: > > 本文翻译自 [Lars Hulstaert][] 于 2017 年 11 月 4 日发表的文章 [Understanding objective
相关 理解交叉熵作为损失函数在神经网络中的作用
交叉熵的作用 通过神经网络解决多分类问题时,最常用的一种方式就是在最后一层设置n个输出节点,无论在浅层神经网络还是在CNN中都是如此,比如,在AlexNet中最后的输出层
相关 神经网络的优化:损失函数
损失函数 损失函数是用来表示预测值(y:通常由前向传播得到)与答案(y\_)的差距。在训练神神经网络是,通过不断的改变神经网络中所有的参数,使损失函数(loss)不断减小
相关 神经网络激活函数的作用是什么
这周本来想写一篇个人笔记,关于神经网络中反向传播算法识别手写字符的实现。但是,在整理自己的思路的时候,发现本人把之前看的许多神经网络的东西都给忘了,内心很是着急啊!在看到激活函
还没有评论,来说两句吧...