发表评论取消回复
相关阅读
相关 负样本回归损失:神经网络中的关键问题
负样本回归损失:神经网络中的关键问题 在深度学习中,神经网络的关键问题之一是如何处理负样本。当训练集中存在大量负样本时,使用传统的损失函数往往会导致网络过度关注正样本,而忽视
相关 神经网络常用的三大激活函数sigmoid函数、tanh函数、relu函数对比讲解
> 在我们学习神经网络的时候经常要用到激活函数,但是我们对于为什么要使用这一个,它们之间的区别和优缺点各是什么不太了解。下面,我们来详细说一说这三个激活函数。 \- sig
相关 神经网络的损失函数讲解
在应用python进行神经网络训练时,我们需要提供神经网络。如Keras中, ![2020102714551132.png][] 定义:在深度学习中。损失函数是用来衡量一
相关 理解交叉熵作为损失函数在神经网络中的作用
交叉熵的作用 通过神经网络解决多分类问题时,最常用的一种方式就是在最后一层设置n个输出节点,无论在浅层神经网络还是在CNN中都是如此,比如,在AlexNet中最后的输出层
相关 神经网络自定义损失函数
神经网络中损失函数定义的是损失,所有要结果利益最大化,定义的损失函数应该刻画成本或者代价。下面的公式为当预测多于真实值和预测少于真实值时有不同损失系数的损失函数: ![损失
相关 神经网络经典损失函数-交叉熵和均方误差
在神经网络中,如何判断一个输出向量和期望的向量有多接近呢?交叉熵(cross entropy)是常用的方法之一,刻画了两个概率分布之间的距离,是分类问题中使用较多的一种损失函数
相关 理解交叉熵作为损失函数在神经网络中的作用
交叉熵的作用 通过神经网络解决多分类问题时,最常用的一种方式就是在最后一层设置n个输出节点,无论在浅层神经网络还是在CNN中都是如此,比如,在AlexNet中最后的输出层
相关 神经网络的优化:损失函数
损失函数 损失函数是用来表示预测值(y:通常由前向传播得到)与答案(y\_)的差距。在训练神神经网络是,通过不断的改变神经网络中所有的参数,使损失函数(loss)不断减小
相关 常见神经网络激活函数讲解
一.什么是激活函数 激活函数,并不是去激活什么,而是指如何把“激活的[神经元][Link 1]的特征”通过函数把特征保留并映射出来(保留特征,去除一些数据中是的冗余),这
相关 神经网络的交叉熵损失函数
常见损失函数 0-1损失函数 L(Y,f(X))=\{ 1,0Y != f(X)Y = f(X) 平方损失函数 L(Y,f(X))=(
还没有评论,来说两句吧...