发表评论取消回复
相关阅读
相关 人工智能-损失函数-优化算法:普通梯度下降算法【BGD(批量梯度下降法)、SGD(随机梯度下降)、MBGD(小批量梯度下降法)】
人工智能-机器学习-损失函数-优化方法:普通梯度下降算法 一、损失函数 二、梯度下降法求解损失函数极小值 1、损失函数 J ( θ 0 , θ 1
相关 梯度下降法-5.随机梯度下降法
之前所讲解的梯度下降法是批量梯度下降法(Batch Gradient Descent),我们将要优化的损失函数在某一点\\(\\theta\\)的梯度值准确的求出来 \\\
相关 梯度下降法-6.调试梯度下降法
梯度下降法的准确性与调试 对于梯度下降法的使用,一个非常重要的步骤是求解我们定义的损失函数\\(J\\)在某个点\\(\\theta\\)上的梯度值\\(dJ\\),我们
相关 梯度下降法-3.实现线性回归中的梯度下降法
实现线性回归中的梯度下降法 构造数据集 import numpy import matplotlib.pyplot as plt 设
相关 梯度下降法-2.线性回归中的梯度下降法
多元线性回归中使用梯度下降 在多元线性回归中,我们的目标是找到一组\\(\\theta=(\\theta\_0,\\theta\_1,\\theta\_2,\\theta
相关 深度学习之梯度下降法
代价函数 在一开始,我们会完全随机地初始化所有的权重和偏置值。可想而知,这个网络对于给定的训练示例,会表现得非常糟糕。例如输入一个3的图像,理想状态应该是输出层3这个点最
相关 梯度下降法总结
前言:网上查了大量写梯度下降法的文章,但是总是发现文章中存在很多问题,所以这里总结一下,更正错误。不然理解起来真的很困难。 参考博文:https://blog.cs
相关 我的人工智能之旅——引子
人工智能 不想人云亦云,于是来刨别家祖坟,一探究竟。 人工智能,一个热得不知所措的话题。就跟当年的“云”一样,聊得臭大街了,但什么是云?就想把你绕晕,其实都在云里雾里。
相关 我的人工智能之旅——梯度下降vs正规方程法
本文将涉及以下知识点 (1)特征缩放 (2)均值归一化 (3)正规方程 优化梯度下降算法 在上一篇博文中,我们了解了梯度下降算法,它为解决线性回归问题提供了思路。
相关 python实现线性回归之梯度下降法,梯度下降详解
线性回归的有关概念已在笔者[相关文章][Link 1]中进行介绍。本篇内容将介绍梯度下降(BGD)相关内容。 1.梯度下降 梯度下降常用于机器学习中求解符合最小损失函数
还没有评论,来说两句吧...