发表评论取消回复
相关阅读
相关 人工智能-损失函数-优化算法:普通梯度下降算法【BGD(批量梯度下降法)、SGD(随机梯度下降)、MBGD(小批量梯度下降法)】
人工智能-机器学习-损失函数-优化方法:普通梯度下降算法 一、损失函数 二、梯度下降法求解损失函数极小值 1、损失函数 J ( θ 0 , θ 1
相关 梯度下降法-5.随机梯度下降法
之前所讲解的梯度下降法是批量梯度下降法(Batch Gradient Descent),我们将要优化的损失函数在某一点\\(\\theta\\)的梯度值准确的求出来 \\\
相关 梯度下降法-6.调试梯度下降法
梯度下降法的准确性与调试 对于梯度下降法的使用,一个非常重要的步骤是求解我们定义的损失函数\\(J\\)在某个点\\(\\theta\\)上的梯度值\\(dJ\\),我们
相关 梯度下降法-3.实现线性回归中的梯度下降法
实现线性回归中的梯度下降法 构造数据集 import numpy import matplotlib.pyplot as plt 设
相关 梯度下降法-2.线性回归中的梯度下降法
多元线性回归中使用梯度下降 在多元线性回归中,我们的目标是找到一组\\(\\theta=(\\theta\_0,\\theta\_1,\\theta\_2,\\theta
相关 机器学习——梯度下降法
Notation: m=number of training examples n=number of features x="input" variables /
相关 梯度下降法通俗解释
请看如下博客: [http://www.cnblogs.com/LeftNotEasy/archive/2010/12/05/mathmatic\_in\_machine\_
相关 梯度下降法、坐标下降法、牛顿迭代法
1 梯度下降法 ![20161109160021419][] 2 坐标下降法 1.首先给定一个初始点,如 X\_0=(x1,x2,…,xn); 2.f
相关 梯度下降法总结
前言:网上查了大量写梯度下降法的文章,但是总是发现文章中存在很多问题,所以这里总结一下,更正错误。不然理解起来真的很困难。 参考博文:https://blog.cs
相关 梯度下降,随机梯度下降
[梯度下降(Gradient Descent)完整篇][Gradient Descent]转载 在求解机器学习算法的模型参数,即无约束优化问题时,梯度下降(Gradient
还没有评论,来说两句吧...