发表评论取消回复
相关阅读
相关 Benchmark Analysis of Representative Deep Neural Network Architecture论文笔记
文地址:[Benchmark Analysis of Representative Deep Neural Network Architecture][] 一 为什么...
相关 论文品读:Learning both Weights and Connections for Efficient Neural Networks
[https://arxiv.org/abs/1506.02626v3][https_arxiv.org_abs_1506.02626v3] 这是一篇关于模型压缩的15年文章
相关 论文品读:Network Trimming: A Data-Driven Neuron Pruning Approach towards Efficient Deep Architectures
[http://cn.arxiv.org/abs/1607.03250][http_cn.arxiv.org_abs_1607.03250] 文章介绍了一种新的评价参数是否需
相关 论文品读:Pruning filters for effecient convnets
[https://arxiv.org/abs/1608.08710][https_arxiv.org_abs_1608.08710] 本文提出了一种基于L1的通道裁剪的方法,
相关 《Channel Pruning for Accelerating Very Deep Neural Networks》论文笔记
1. 概述 这篇文章提出了一种基于LASSO回归的通道选择和最小二乘重构的迭代两步算法,有效地对每一层进行修剪。并进一步将其推广到多层和多分枝的场景下。论文中的方法能够减
相关 《Pruning Filters for Efficient Convnets》论文笔记
1. 概述 CNN网络经被在众多方面展现了其成功,但是随之而来的是巨大的计算量与参数存储空间。这篇论文中给出一种剪除卷积滤波器的方法(确实会影响精度),但是移除这些滤波器
相关 论文品读:Pruning Convolutional Neural Networks for Resource Efficient Inference
模型裁剪系列相关论文品读博客: 1.论文品读:Learning both Weights and Connections for Efficient Neural Ne
相关 《Soft Filter Pruning for Accelerating Deep Convolutional Neural Networks》论文笔记
1. 概述 这篇文章中给出了一种叫作SFP(Soft Filter Pruning),它具有如下两点优点: 1)Larger model capacity。相比直接剪
相关 论文品读:Stability Based Filter Pruning for Accelerating Deep CNNs
2018年的论文,提出了一种新的评价卷积核重要程度的方式。 主要思想是比较改变损失函数前后训练得到的两套参数,如果某个位置的参数改变的幅度大,就认为该参数是敏感的不稳定的,那
相关 《ENet: A Deep Neural Network Architecture for Real-Time Semantic Segmentation》论文笔记
1. 概述 > 导读:一般的分割网络需要大量的浮点运算以及较长的运算时间,这个妨碍了其在实时要求较高场合的使用,这篇文章提出了基于编解码器结构的实时分割网络ENT(Eff
还没有评论,来说两句吧...