发表评论取消回复
相关阅读
相关 统计学习方法——K近邻模型
0. 写在前面 在这一讲的讨论班中,我们将要讨论一下K近邻模型。可能有人会说,K近邻模型有什么好写的,那分明就是一个最简单的机器学习模型,哦,不,连机器学习也算不上的算法
相关 机器学习——K-近邻算法
一、k-近邻算法简介 1.1、作者 k近邻法(k-nearest neighbor, k-NN)是1967年由Cover T和Hart P提出的一种基本分类与回归方法
相关 k近邻算法matlab实现_k近邻算法
k 近邻法 (k-NN) 是一种基于实例的学习方法,无法转化为对参数空间的搜索问题(参数最优化 问题)。它的特点是对特征空间进行搜索。除了k近邻法,本章还对以下几个问题进行较深
相关 K-近邻算法实现简单filmClassify
k-近邻算法采用测量不同特征值之间的距离方法进行分类,属于监督学习。 主要代码如下: def createDataSet(): group
相关 k-近邻算法及代码
PS:本文中的大部分代码和案例数据来自《机器学习实践》这本书,但是原文中代码几乎没有注解,直接阅读难度很大,我在调试时增加了更详细的注解和步骤上的描述,方便理解。
相关 机器学习k近邻算法
毕业10年,回过头看线性代数,全部还给了老师。翻看《Machine Learning in Action》做做笔记 1 欧式距离计算 -- coding: ut
相关 统计学习方法朴素贝叶斯法(附简单模型代码)
朴素贝叶斯(naïve Bayes) 法是基于贝叶斯定理与特征条件独立假设的分类方法。对于给定的训练数据集, 首先基于特征条件独立假设学习输入/输出的联合概率分布; 然后基于此
相关 统计学习方法 k 近邻算法(附简单模型代码)
1. k 近邻算法 k近邻法(k-nearest neighbor, k-NN) 是一种基本分类与回归方法。 k近邻法的输入为实例的特征向量, 对应于特征空间的点; 输
相关 统计学习方法感知机(附简单模型代码)
1. 感知机模型 输入为实例的特征向量, 输出为实例的类别, 取+1和-1;感知机对应于输入空间中将实例划分为正负两类的分离超平面, 属于判别模型;导入基于误分类的损失函
还没有评论,来说两句吧...