发表评论取消回复
相关阅读
相关 机器学习决策树算法cart剪枝
目录 1 为什么要剪枝 2 常用的减枝方法 2.1 预剪枝 2.2 后剪枝 3 小结 -------------------
相关 《机器学习实战》笔记(03):决策树
决策树 ![decision tree][] kNN算法可以完成很多分类任务,但是它最大的缺点就是给出数据的内在含义,决策树的主要优势就在于数据形式非常容易理解 决
相关 【机器学习实战】学习笔记 | 决策树
分类决策树: 由节点和有向边组成。结点有两种类型:内部结点和叶子结点。内部结点表示一个特征或者属性,叶结点表示一个类(也就是最终决定结果) 构建决策树: 1 特征
相关 决策树(2)CART
上一篇文章介绍了基于ID3的决策树,讲到了其中的关键元素是:特征选择、决策树构造以及剪枝;同样,CART(classification and regression tree)
相关 机器学习实战之决策树
你是否玩过二十个问题的游戏,游戏的规则很简单:参与游戏的一方在脑海里想某个事物,其他参与者向他提问题,只允许提20个问题,问题的答案也只能用对或错回答。问问题的人通过 推断分解
相关 CART决策树
参考: 1. [http://www.cnblogs.com/yonghao/p/5135386.html][http_www.cnblogs.com_yonghao_
相关 机器学习实战(六)决策树(下)CART详解
文章目录 一、CART分类树回归树简介 二、CART分类树分裂属性的选择 三、CART回归树分类属性的选择 四、剪枝
相关 机器学习实战决策树画图理解
机器学习实战第二章决策树难点 第二章决策树用matplotlib画图的理解 决策树matplotlib画图代码 第二章决策树用matplotlib画
还没有评论,来说两句吧...