发表评论取消回复
相关阅读
相关 卷积层和池化层中padding参数“SAME”和“VALID”的区别
padding参数的作用是决定在进行卷积或池化操作时,是否对输入的图像矩阵边缘补0,‘SAME’ 为补零,‘VALID’ 则不补,因为在这些操作过程中过滤器可能...
相关 padding卷积的两种方式“SAME”和“VALID”
conv2d是常用的实现卷积的,Tensorflow调用Conv的api时,常用代码如下: 查看:[https://tensorflow.google.cn/api\_doc
相关 卷积神经网络CNN、感受野、边缘检测、卷积层(零填充padding、步长、多通道卷积、多卷积核)、池化层Pooling、全连接层
![20191009191333910.png][][日萌社][Link 1] [人工智能AI:Keras PyTorch MXNet TensorFlow Paddle
相关 CNN卷积层、池化层、全连接层
卷积神经网络是通过神经网络反向传播自动学习的手段,来得到各种有用的卷积核的过程。 卷积神经网络通过卷积和池化操作,自动学习图像在各个层次上的特征,这符合我们理解图像的常识。人
相关 卷积层和BN层融合
解释也不错: [https://my.oschina.net/u/4395251/blog/4769266][https_my.oschina.net_u_4395251_b
相关 使用TensorFlow搭建CNN卷积层和池化层
下面代码中,输入图像色彩通道为3;卷积层的过滤器大小设置为5\5,深度为16,步长为1;池化层的过滤器大小设置为3\3,步长为2。卷积层全0填充:使输入得图像的输出时大小相同。
相关 理解CNN卷积层与池化层计算
概述 深度学习中CNN网络是核心,对CNN网络来说卷积层与池化层的计算至关重要,不同的步长、填充方式、卷积核大小、池化层策略等都会对最终输出模型与参数、计算复杂度产生重要
相关 卷积神经网络——输入层、卷积层、激活函数、池化层、全连接层
转自:[https://blog.csdn.net/qq\_27022241/article/details/78289083][https_blog.csdn.net_qq_
相关 深度学习技巧:(1)“SAME”和“VALID”对应的卷积层输出大小
[https://blog.csdn.net/wuzqChom/article/details/74785643][https_blog.csdn.net_wuzqChom_a
相关 tensorflow中卷积和池化函数中padding问题
一. 池化: ![watermark_type_ZmFuZ3poZW5naGVpdGk_shadow_10_text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0
还没有评论,来说两句吧...