发表评论取消回复
相关阅读
相关 数据挖掘(数据预处理,特征工程)
.StandardScaler 确保处理后的特征均值为0,方差为1,但是不确保特征任何特定的最大,最小值 2.RobustScaler 与StandardSca...
相关 机器学习之特征工程-数据预处理
[https://www.jianshu.com/p/23b493d38b5b][https_www.jianshu.com_p_23b493d38b5b] [http
相关 特征工程-数据预处理、特征选择、降维
理论知识和代码参考知乎https://www.zhihu.com/question/29316149/answer/110159647 \ -\- coding: utf-8
相关 数据挖掘-特征工程
特征工程,看图说话: ![927391-20160430145122660-830141495.jpg][] ![kaggle-_E7_89_B9_E5_BE_81_E5_
相关 机器学习实战——特征工程之数据预处理
机器学习实战的特征工程主要包含数据预处理、特征构建、特征选择三步,首先来介绍数据预处理。 我选择python作为工具,并将主要用到pandas、numpy等数据工具库。加载库
相关 数据挖掘--数据预处理(1)
这篇博客总结在数据挖掘,数据预处理阶段常用的方法和技巧,对于kaggle和天池的比赛和适用 import pandas as pd train_pd
相关 数据挖掘——数据预处理(2)
统计缺失值 train = pd.read_csv("train.csv") null_columns=train.columns[train.isnu
还没有评论,来说两句吧...