发表评论取消回复
相关阅读
相关 ACM第二周训练题目合集
![dbf0e3b6e4684b4a9883d0679ebf5d03.png][]已经写过了这个题目,所以不再赘述 ![2deb5bc5d0a34b568dd40bb2122
相关 合集 - DecryptPrompt(10)1.Prompt系列8. 无需训练让LLM支持超长输入:知识库 & unlimiformer & PCW & NBCE06-132.解密Pro
前一章[思维链基础和进阶玩法][Link 1]我们介绍了如何写Chain-of-thought Prompt来激活生成逐步推理,并提高模型解决复杂问题的能力,这一章我们追本溯源
相关 解密Prompt系列8. 无需训练让LLM支持超长输入:知识库 & unlimiformer & PCW & NBCE
这一章我们聊聊有哪些方案可以不用微调直接让大模型支持超长文本输入,注意这里主要针对无限输入场景。之前在BERT系列中我们就介绍过稀疏注意力和片段递归的一些长文本建模方案[长文本
相关 解密prompt系列5. APE+SELF=自动化指令集构建代码实现
上一章我们介绍了不同的指令微调方案, 这一章我们介绍如何降低指令数据集的人工标注成本!这样每个人都可以构建自己的专属指令集, 哈哈当然我也在造数据集进行时~ 介绍两种方案SE
相关 解密Prompt系列3. 冻结LM微调Prompt: Prefix-Tuning & Prompt-Tuning & P-Tuning
这一章我们介绍在下游任务微调中固定LM参数,只微调Prompt的相关模型。这类模型的优势很直观就是微调的参数量小,能大幅降低LLM的微调参数量,是轻量级的微调替代品。和前两章微
相关 解密Prompt系列1. Tunning-Free Prompt:GPT2 & GPT3 & LAMA & AutoPrompt
借着ChatGPT的东风,我们来梳理下prompt范式的相关模型。本系列会以A Systematic Survey of Prompting Methods in Natura
相关 解密Prompt系列2. 冻结Prompt微调LM: T5 & PET & LM-BFF
这一章我们介绍固定prompt微调LM的相关模型,他们的特点都是针对不同的下游任务设计不同的prompt模板,在微调过程中固定模板对预训练模型进行微调。以下按时间顺序介绍,支持
相关 【LLM系列之Tokenizer】如何科学地训练一个LLM分词器
1 背景与基础 1.1 为什么需要分词 对于人而言,在我们学会阅读之前,仍然可以理解语言。比如当你开始上学时,即使你不知道名词和动词之间的区别,但是你已经可以
相关 LLM:prompt指令数据制作
[https://github.com/ymcui/Chinese-LLaMA-Alpaca][https_github.com_ymcui_Chinese-LLaMA-Alp
相关 LLM-微调-方案(0):prompt tuning
先说结论:已经有研究显示Prompt可以有效地应用到CV领域 \[[VPT][], CLIP, CoOP\],但是应用仍然非常有限,有很大发挥空间。其一,Prompt的本质是调
还没有评论,来说两句吧...