发表评论取消回复
相关阅读
相关 使用pandas进行数据分析:遇到的Python数据处理问题和解决方法
在使用Pandas进行数据分析时,可能会遇到各种问题。以下是一些常见问题及其解决方案: 1. 数据缺失或空值: - 使用`isna()`检查缺失值。 - 使用`f
相关 关于数据集不平衡的处理方式
前言 最近在学习机器挖掘内容,其中有一个问题应该是大家都会碰到的问题,就是如果样本数据中类别样本个数相差巨大该如何处理,比如,A类别100个样本,B类别10000个样...
相关 使用imbalanced-learn的SMOTEN方法进行数据上采样处理不平衡问题
使用imbalanced-learn的SMOTEN方法进行数据上采样处理不平衡问题 在机器学习中,由于数据集的不均衡性导致某些类别的训练样本数量较少,为了提高模型的泛化能力和
相关 人工智能中非平衡数据处理方法、欠采样、过采样讲解(简单易懂)
非平衡数据产生现象及原因 非平衡数据是人工智能安全中经常遇到的问题,一方面,在采集和准备数据时,由于安全事件发生的可能性不同等因素的影响,使得训练数据存在非平衡,另一方面
相关 不平衡分类(一)-综述:imblearn/imbalanced-learn库【提供了许多重采样技术,常用于显示强烈类间不平衡的数据集中】【降采样、过采样(SMOTE )】
一、imblearn/imbalanced-learn库的简介 imblearn/imbalanced-learn是一个python包,它提供了许多重采样技术,常用于显示
相关 分类中解决类别不平衡问题:imbalanced-learn、过采样、欠采样
![20191009191333910.png][][日萌社][Link 1] [人工智能AI:Keras PyTorch MXNet TensorFlow Paddle
相关 php使用yield进行大量数据处理方法
我们在处理大量数据,比如100万数据导入数据库,一般常规方法如果使用普通循环做逐个处理,很快会导致内存崩溃,无法实现正常的处理。php提供了yield方法来处理。
相关 使用pandas对时间序列数据进行等距重采样处理
我们的目标是将原始数据处理成每隔30秒一个数据样本,且每个30秒内使用均值计算,如下图所示: ![在这里插入图片描述][watermark_type_ZmFuZ3poZW5
相关 数据分析:使用Imblearn处理不平衡数据(过采样、欠采样)
现实环境中,采集的数据(建模样本)往往是比例失衡的。比如网贷数据,逾期人数的比例是极低的(千分之几的比例)。对于这样的数据很难建立表现好的模型。好在Python有Imblear
相关 在使用过采样或欠采样处理类别不均衡的数据后,如何正确的做交叉验证?
本文讲的是在使用过采样或欠采样处理类别不均衡的数据后,如何正确的做交叉验证?, 几个星期前我阅读了一篇[交叉验证的技术文档(Cross Validation Don
还没有评论,来说两句吧...