发表评论取消回复
相关阅读
相关 高斯朴素贝叶斯算法的Python实现及完整源代码
高斯朴素贝叶斯算法的Python实现及完整源代码 高斯朴素贝叶斯算法是一种基于贝叶斯定理和特征独立性假设的分类方法,广泛应用于文本分类、邮件过滤、垃圾短信分类等领域。本文将介
相关 朴素贝叶斯算法及贝叶斯网络详述
1、贝叶斯定理 先验概率P(A):在不考虑其他的情况下,A事件发生的概率。 条件概率P(B|A):A事件发生的情况下,B事件发生的概率。 后验概率P(A
相关 朴素贝叶斯算法
利用朴素贝叶斯算法来对评价的好坏进行分类: 原始数据为: ![watermark_type_ZmFuZ3poZW5naGVpdGk_shadow_10_text_aHR0c
相关 朴素贝叶斯算法的python实现
朴素贝叶斯 算法优缺点 优点:在数据较少的情况下依然有效,可以处理多类别问题 缺点:对输入数据的准备方式敏感 适用数据类型:标称型数据
相关 朴素贝叶斯算法
朴素贝叶斯与前一篇ID3决策树最大的不同之处是前者是给出最大可能性结果的猜想和概率,后者是“武断”的给定唯一分类结果。 我们称之为“朴素”,是因为整个形式化过程只做原始、简单
相关 朴素贝叶斯算法
1 概率基础 联合概率、条件概率与相互独立定义 联合概率:包含多个条件,且所有条件同时成立的概率 P(程序员, 匀称) P(程序员, 超重|
相关 朴素贝叶斯算法
理论: P(X|Y) = P(X,Y)/P(Y) P(X,Y) = P(X|Y)P(Y) P(X,Y) = P(Y|X)P(X) 由此推导出朴素贝叶斯公式:
还没有评论,来说两句吧...