发表评论取消回复
相关阅读
相关 小样本学习(FSL):Few-shot Learning 综述【模型微调(Fine-tunning)、数据增强、迁移学习(Transfer Learning)】
分类非常常见,但如果每个类只有几个标注样本,怎么办呢? 比如:我们打造了一个智能对话开发平台以赋能第三方开发者来开发各自业务场景中的任务型对话,其中一个重要功能就是对意图进行
相关 美团获得小样本学习榜单FewCLUE第一!Prompt Learning+自训练实战
> 近日,美团搜索与NLP部NLP中心语义理解团队的小样本学习模型FSL++在中文小样本语言理解权威评测基准FewCLUE榜单登顶,在自然语言推理(OCNLI)单任务中取得第一
相关 小样本学习(Few-shot Learning)综述
分类非常常见,但如果每个类只有几个标注样本,怎么办呢? 笔者所在的阿里巴巴小蜜北京团队就面临这个挑战。我们打造了一个智能对话开发平台——Dialog Studio,以赋能第三
相关 小样本学习介绍
基本概念 在大多数时候,你是没有足够的图像来训练深度神经网络的,这时你需要从小样本数据快速学习你的模型。 Few-shot Learning 是 Meta Learni
相关 小样本点云深度学习库_小样本学习:数据层面的方法
本公众号的推送以互联网大数据技术为主,是《互联网大数据处理技术与应用》《Python爬虫大数据采集与挖掘》等课程的配套号。内容涉及大数据采集、存储、分析挖掘的模型算法、隐私等技
相关 深度学习分类只有正样本_正样本和无标签学习:PU Learning,使用机器学习恢复数据标签...
> 作者:AaronWard > > 编译:ronghuaiyang 导读 > 你有数据,但是标签并不可靠,你该怎么办? ![a5a979b5e0a3f13f195
相关 小样本分割综述
转自:[https://zhuanlan.zhihu.com/p/142899098][https_zhuanlan.zhihu.com_p_142899098] 声明一下,
相关 Few-shot learning(少样本学习)和 Meta-learning(元学习)概述
目录 (一)Few-shot learning(少样本学习) 1. 问题定义 2. 解决方法 2.1 数据增强和正则化
相关 【转】元学习Meta Learning/Learning to learn
1 前言 Meta Learning 元学习或者叫做 Learning to Learn 学会学习 已经成为继Reinforcement Learning 增强学习之后又
相关 当小样本遇上机器学习 few shot learning one shot learning
引言 [来源][Link 1] 深度学习(deep learning)已经广泛应用于各个领域,解决各类问题,例如在图像分类问题下,如图1,区分这10类目标的
还没有评论,来说两句吧...