常用排序算法总结
本文摘自:http://hi.baidu.com/gimrtxbfjn/blog/item/1a0d986f42615d270dd7da54.html
常用排序算法,并说明其时间复杂度思想。 冒泡排序:两两比较待排序数据元素的大小,发现两个数据元素的次序相反时即进行交换,直到没有反序的数据元素为止。算法时间复杂度是O(n^2)。
选择排序:每一趟从待排序的数据元素中选出最小(或最大)的一个元素,顺序放在已排好序的数列的最后,直到全部待排序的数据元素排完,算法复杂度是O(n^2)。
插入排序:每次将一个待排序的数据元素,插入到前面已经排好序的数列中的适当位置,使数列依然有序;直到待排序数据元素全部插入完为止。算法时间复杂度是O(n^2)
快速排序:在当前无序区R[1..H]中任取一个数据元素作为比较的”基准”(不妨记为X),用此基准将当前无序区划分为左右两个较小的无序区:R[1..I-1]和R[I+1..H],且左边的无序子区中数据元素均小于等于基准元素,右边的无序子区中数据元素均大于等于基准元素,而基准X则位于最终排序的位置上,即R[1..I-1]≤X.Key≤RI+1..H,当R[1..I-1]和R[I+1..H]均非空时,分别对它们进行上述的划分过程,直至所有无序子区中的数据元素均已排序为止。不稳定,最理想情况算法时间复杂度O(nlog2n),最坏O(n^2)。
堆排序:堆排序是一树形选择排序,在排序过程中,网络seo,将R[1..N]看成是一颗完全二叉树的顺序存储结构,利用完全二叉树中双亲结点和孩子结点之间的内在关系来选择最小的元素。算法时间复杂度O(nlogn)。
希尔排序:其实就是用步长控制的插入排序,希尔排序通过加大插入排序中元素之间的间隔,并在这些有间隔的元素中进行插入排序,从而让数据项可以大幅度移动,这样的方式可以使每次移动之后的数据离他们在最终序列中的位置相差不大,保证数据的基本有序,大大提升了排序速度,运算时间复杂度NlogN。
归并排序:Divide: 把长度为n的输入序列分成两个长度为n/2的子序列。Conquer: 对这两个子序列分别采用归并排序。Combine: 将两个排序好的子序列合并成一个最终的排序序列。时间复杂度是O(nlog2n)。 常见排序算法的稳定性分析和结论 首先,排序算法的稳定性大家应该都知道,通俗地讲就是能保证排序前2个相等的数其在序列的前后位置顺序和排序后它们两个的前后位置顺序相同。在简单形式化一下,如果Ai = Aj, Ai原来在位置前,排序后Ai还是要在Aj位置前。 其次,说一下稳定性的好处。排序算法如果是稳定的,那么从一个键上排序,然后再从另一个键上排序,第一个键排序的结果可以为第二个键排序所用。基数排序就是这样,先按低位排序,逐次按高位排序,低位相同的元素其顺序再高位也相同时是不会改变的。另外,如果排序算法稳定,对基于比较的排序算法而言,元素交换的次数可能会少一些(个人感觉,没有证实)。 回到主题,现在分析一下常见的排序算法的稳定性,每个都给出简单的理由。 (1)冒泡排序 冒泡排序就是把小的元素往前调或者把大的元素往后调。比较是相邻的两个元素比较,交换也发生在这两个元素之间。所以,如果两个元素相等,我想你是不会再无聊地把他们俩交换一下的;如果两个相等的元素没有相邻,那么即使通过前面的两两交换把两个相邻起来,这时候也不会交换,所以相同元素的前后顺序并没有改变,所以冒泡排序是一种稳定排序算法。 (2)选择排序 选择排序是给每个位置选择当前元素最小的,比如给第一个位置选择最小的,在剩余元素里面给第二个元素选择第二小的,依次类推,直到第n-1个元素,第n个元素不用选择了,因为只剩下它一个最大的元素了。那么,在一趟选择,如果当前元素比一个元素小,而该小的元素又出现在一个和当前元素相等的元素后面,那么交换后稳定性就被破坏了。比较拗口,举个例子,序列5 8 5 2 9, 我们知道第一遍选择第1个元素5会和2交换,那么原序列中2个5的相对前后顺序就被破坏了,所以选择排序不是一个稳定的排序算法。 (3)插入排序 (4)快速排序 (5)归并排序 (6)基数排序 (7)希尔排序(shell) (8)堆排序 综上,得出结论: 选择排序、快速排序、希尔排序、堆排序不是稳定的排序算法,而冒泡排序、插入排序、归并排序和基数排序是稳定的排序算法。还有一些排序算法我没有进行 |
还没有评论,来说两句吧...