发表评论取消回复
相关阅读
相关 【深度学习】学习率及多种选择策略
如果我们对每次迭代的学习进行记录,并绘制学习率(对数尺度)与损失,我们会看到,随着学习率的提高,从某个点开始损失会停止下降并开始提高。在「训练神经网络的周期性学习速率」[...
相关 深度学习: 学习率 (learning rate)
Introduction 学习率 (learning rate),控制 模型的 学习进度 : ![这里写图片描述][SouthEast] lr 即 stride (
相关 【深度学习】如何找到最优学习率
经过了大量炼丹的同学都知道,超参数是一个非常玄乎的东西,比如batch size,学习率等,这些东西的设定并没有什么规律和原因,论文中设定的超参数一般都是靠经验决定的。但是超参
相关 深度学习:batch_size和学习率 及如何调整
[\-柚子皮-][-_-] 学习率衰减 1 在神经网络的训练过程中,当accuracy出现震荡或loss不再下降时,进行适当的学习率衰减是一个行之有效的手段,很多时候能
相关 【深度学习】Dropout与学习率衰减
【深度学习】Dropout与学习率衰减 文章目录 【深度学习】Dropout与学习率衰减 1 概述 2 在Keras中使用Dropout
相关 深度学习: 学习率热身 (warm up)
深度学习训练策略-学习率预热 Warm up Warm up 主要解决如下几个问题: 训练是否成功的问题,[参考这篇][Link 1] (1)训练出现NaN:当网络非
相关 使用深度学习预测员工流失率
![1e9c79f0ae84fbbdeae45275aaaeb037.png_wxfrom_5_wx_lazy_1][] 墨西哥的员工流动率在全球排名第八,平均每年约17%的
相关 深度学习实战(八)——如何设置学习率
一、学习率的介绍 学习率是深度学习中的一个重要的超参,如何调整学习率是训练出好模型的关键要素之一。在通过SGD求解问题的极小值时,梯度不能太大,也不能太小。太
相关 深度学习中学习率的更新策略(MNIST实践)
引入 随机梯度下降(SGD)算法是现如今使用较为广泛的优化算法(此处的SGD指的是小批量梯度下降)。具体执行方法是不断迭代直到满足停止准则,在每次的迭代中取小批量训练集,
还没有评论,来说两句吧...