发表评论取消回复
相关阅读
相关 大模型微调技术LoRA与QLoRA
大模型的参数量都在100B级别,由于算力的吃紧,在这个基础上进行所有参数的微调变得不可能。LoRA正是在这个背景下提出的解决方案。 1|2原理 虽然模型的参数众多,但其
相关 LLM-微调:Peft库--get_peft_model()-->在llm基座模型的基础上注入Lora模块(加载流程)【注入的Lora模块的初始参数是随机初始化的】
一、site-packages-->peft-->mapping.py-->get\_peft\_model() def get_peft_model(model
相关 LLM-微调:LoRA 模型合并与保存【将利用lora训练后的lora模型与基座模型合并,将新合并的模型用作独立模型】【可以将基座模型合并多个lora模型】
一.引言 I. Introduction LLM 使用过程中最常用方法之一就是通过 [LoRA][] 基于自己的数据对大模型进行微调,本文简单介绍 LoRA 原理以及如何
相关 基座模型选取
前言 为获取最佳阅读格式体验,建议访问个人博客:[复刻ChatGPT语言模型系列-(一)基座模型选取][ChatGPT_-] 今天开始我将会推出一系列关于复刻ChatG
相关 大模型参数高效微调技术原理综述 之 LoRA、AdaLoRA、QLoRA
随着,ChatGPT 迅速爆火,引发了大模型的时代变革。然而对于普通大众来说,进行大模型的[预训练][Link 1]或者全量微调遥不可及。由此,催生了各种参数高效微调技术,让科
相关 Peft库实战(一):Lora微调bert(文本情感分类)
peft\_bert\_demo.py import argparse import os import torch from to
相关 Peft库使用技巧(二):删除、合并微调参数【从全参数微调后的模型参数中剔除基座模型参数(冻结),然后发布自己训练的这部分参数模块】
从全参数微调后的模型参数中剔除基座模型参数(冻结),然后发布自己训练的这部分参数模块 Copyright 2023 Rohan Taori, Ishaan G
相关 Peft库使用技巧(一):合并基座模型与Lora模型【使用Peft库微调基座模型(比如LLaMA-7B)后会得到Lora参数模块,将基座模型与Lora参数合并后才能得到完整的微调后的大模型】
使用Peft库微调基座模型(比如LLaMA-7B)后会得到Lora参数模块,将基座模型与Lora参数合并后才能得到完整的微调后的大模型 Copyright 2
相关 LLM-LLaMA中文衍生模型:Chinese-LLaMA-Alpaca【扩充词表、Lora部分参数预训练、微调】
GitHub:[GitHub - ymcui/Chinese-LLaMA-Alpaca: 中文LLaMA&Alpaca大语言模型+本地CPU/GPU训练部署 (Chinese
相关 大模型-微调技术:PEFT库
pypi:[https://pypi.org/project/peft/][https_pypi.org_project_peft] 目前peft 0.3.0 code地址:
还没有评论,来说两句吧...