发表评论取消回复
相关阅读
相关 【ChatGLM3】微调指南
下载数据集ToolAlpaca 从GitHub下载 cd ChatGLM3/finetune_chatmodel_demo git clone h
相关 【万字长文】LLaMA, ChatGLM, BLOOM的参数高效微调实践
1. 开源基座模型对比 大语言模型的训练分为两个阶段:(1)在海量文本语料上的无监督预训练,学习通用的语义表示和世界知识。(2)在小规模数据上,进行指令微调和基于人类反馈
相关 AIGC|FineTune工程之LoRa高效参数微调
徐辉 | 后端开发工程师 一、引言 随着深度学习和自然语言处理技术的快速发展,大型预训练语言模型(如GPT、Vicuna、Alpaca、Llama、ChatGLM等)在
相关 Full-Parameter全参数微调与LoRA低秩微调
近年来,大型语言模型的指令微调是自然语言处理领域的一个重要研究领域。 由于资源和成本的限制,一些研究人员采用了参数有效的调整技术,如LoRA,并取得了不错的结果。与全参数微
相关 大模型-DeltaTuning:①增量式(原模型参数不变,插入可微调参数层)、②指定式(原模型参数冻结一部分参数,微调一部分参数)、③重参数化式(将原模型参数层改造,比如插入低秩)
【随着模型增大,各方案区别不大】 ![9c2b5ab5be484724ab9f0f473db60f2c.png][] ![b71bc8fda98448d3866afd79
相关 LLM-微调-方案(0):prompt tuning
先说结论:已经有研究显示Prompt可以有效地应用到CV领域 \[[VPT][], CLIP, CoOP\],但是应用仍然非常有限,有很大发挥空间。其一,Prompt的本质是调
相关 LLM-微调-全参数微调:Full-Param Fine-tuning(100% parameters)
fine-tuning的过程就是用训练好的参数(从已训练好的模型中获得)初始化自己的网络,然后用自己的数据接着训练,参数的调整方法与from scratch训练过程一样(梯度下
相关 大模型-DeltaTuning-增量式04:p-tuning v2【在Transformer原有结构最后插入一层pre_encoder层】【微调时冻结原有结构参数,只微调新加入的网络层参数】
案例:chatGLM !/usr/bin/env python coding=utf-8 Copyright 2021 The HuggingFa
相关 LLM-微调-方案(一):Lora【案例:chatGLM-Lora】【在chatGLM原有结构中间插入新的网络层】【微调时冻结原有结构参数,只微调新加入的网络层参数】
Lora主要在模型中注入可训练模块,大模型在预训练完收敛之后模型包含许多进行矩阵乘法的稠密层,这些层通常是满秩的,在微调过程中其实改变量是比较小的,在矩阵乘法中表现为低秩的改变
相关 多层自编码器的微调
多层自编码器由多个稀疏自编码器和一个Softmax分类器构成;(其中,每个稀疏自编码器的权值可以利用无标签训练样本得到, Softmax分类器参数可由有标签训练样本得到) 多层
还没有评论,来说两句吧...