发表评论取消回复
相关阅读
相关 关于数据集不平衡的处理方式
前言 最近在学习机器挖掘内容,其中有一个问题应该是大家都会碰到的问题,就是如果样本数据中类别样本个数相差巨大该如何处理,比如,A类别100个样本,B类别10000个样...
相关 样本不平衡【①、利用SMOTE算法合成新的少数类样本】
SMOTE算法(Synthetic Minority Oversampling Technique) :[Python库:imbalanced-learn 0.9.0][Pyt
相关 Pytorch深度学习实战教程(四):必知必会的炼丹法宝
![format_png][] > 本文 GitHub [https://github.com/Jack-Cherish/PythonPark][https_github.c
相关 小样本点云深度学习库_小样本学习:数据层面的方法
本公众号的推送以互联网大数据技术为主,是《互联网大数据处理技术与应用》《Python爬虫大数据采集与挖掘》等课程的配套号。内容涉及大数据采集、存储、分析挖掘的模型算法、隐私等技
相关 【深度学习】深度学习之对抗样本问题和知识蒸馏技术
文章目录 1 什么是深度学习对抗样本 2 深度学习对于对抗样本表现的脆弱性产生的原因 3 深度学习的对抗训练 4 深度学习中的对抗攻击和
相关 不平衡数据的机器学习
不平衡数据的场景出现在互联网应用的方方面面,如搜索引擎的点击预测(点击的网页往往占据很小的比例),电子商务领域的商品推荐(推荐的商品被购买的比例很低),信用卡欺诈检测,网络攻击
相关 机器学习:不均衡样本情况下的抽样
题目 在分类问题中,我们经常会遇到正负样本数据量不等的情况,比如正样本为10w条数据,负样本只有1w条数据,以下最合适的处理方法是( )(多选) A. 将负样本重复10
相关 【深度学习】CNN炼丹TIPS
确保收敛 以下小技巧用来是网络收敛的必要不充分条件: 1. 迭代次数(Epoch):至少`5-7`个`epoch`,也就是必须对所有样本训练`5-7`遍,可以根据实际
相关 样本不平衡 分类 难分样本 hard example OHEM
样本不平衡问题 如在二分类中正负样本比例存在较大差距,导致模型的预测偏向某一类别。如果正样本占据1%,而负样本占据99%,那么模型只需要对所有样本输出预测为负样本,那
还没有评论,来说两句吧...