datav(datav) £神魔★判官ぃ 2023-09-26 12:17 88阅读 0赞 ## DataV的浏览器兼容性如何?IE支持哪几个版本? ## 6.0以上的版本应该都支持 ## 什么是DataV数据可视化 ## 一,数据可视化 数据可视化,是关于数据视觉表现形式的科学技术研究。其中,这种数据的视觉表现形式被定义为,一种以某种概要形式抽提出来的信息,包括相应信息单位的各种属性和变量。\[一\] 它是一个处于不断演变之中的概念,其边界在不断地扩大。主要指的是技术上较为高级的技术方法,而这些技术方法允许利用图形、图像处理、计算机视觉以及用户界面,通过表达、建模以及对立体、表面、属性以及动画的显示,对数据加以可视化解释。与立体建模之类的特殊技术方法相比,数据可视化所涵盖的技术方法要广泛得多。 二,信息可视化 信息可视化(Information visualization)是一个跨学科领域,旨在研究大规模非数值型信息资源的视觉呈现,如软件系统之中众多的文件或者一行行的程序代码,以及利用图形图像方面的技术与方法,帮助人们理解和分析数据。与科学可视化相比,信息可视化则侧重于抽象数据集,如非结构化文本或者高维空间当中的点(这些点并不具有固有的二维或三维几何结构) ## 大数据分析师主要是做什么的?没有基础能学吗? ## 1、懂业务。从事数据分析工作的前提就会需要懂业务,即熟悉行业知识、公司业务及流程,最好有自己独到的见解,若脱离行业认知和公司业务背景,分析的结果只会是脱了线的风筝,没有太大的使用价值。 2、懂管理。一方面是搭建数据分析框架的要求,比如确定分析思路就需要用到营销、管理等理论知识来指导,如果不熟悉管理理论,就很难搭建数据分析的框架,后续的数据分析也很难进行。另一方面的作用是针对数据分析结论提出有指导意义的分析建议。 3、懂分析。指掌握数据分析基本原理与一些有效的数据分析方法,并能灵活运用到实践工作中,以便有效的开展数据分析。基本的分析方法有:对比分析法、分组分析法、交叉分析法、结构分析法、漏斗图分析法、综合评价分析法、因素分析法、矩阵关联分析法等。高级的分析方法有:相关分析法、回归分析法、聚类分析法、判别分析法、主成分分析法、因子分析法、对应分析法、时间序列等。 4、懂工具。指掌握数据分析相关的常用工具。数据分析方法是理论,而数据分析工具就是实现数据分析方法理论的工具,面对越来越庞大的数据,我们不能依靠计算器进行分析,必须依靠强大的数据分析工具帮我们完成数据分析工作。 5、懂设计。懂设计是指运用图表有效表达数据分析师的分析观点,使分析结果一目了然。图表的设计是门大学问,如图形的选择、版式的设计、颜色的搭配等等,都需要掌握一定的设计原则 6.需要有一定的计算机,系统,编程能力。dmer 的熟练使用。项目数据分析师于注册项目数据分析师是实质上是一样的,只是有的叫法不一。 项目数据分析师(certified projects data analyst)简称:cpda ,是专业从事投资项目财务数据分析的高级决策人通过掌握的大量行业数据以及科学的计算工具,为投资机构做出正确的项目投资决策。 cpda 由中国商业联合会数据分析专业委员会,国家工信部颁发的项目数据分析师职业技术证书。 【主要工作领域及岗位】 1、从事投资项目审核审批和招商引资、项目评估、投资决策等工作的政府机构、企业的相关领导以及从业人员。 2、在银行或非银行金融机构、投资管理公司、投资管理顾问公司从事风险投资、产业投资、信贷和投资管理等方面工作的专业从业人员。 3、会计师事务所、资产评估事务所及税务师事务所、律师相关专业人员。\` 4、学习财务、统计、投资、金融和企业管理等相关专业的在校应届学生。 5、在企事业单位从事市场调查与宣传工作的人士以及具有策划与决策工作职能要求的人士。 6、希望在不同领域尝试创业以及在投资、金融、资本运营、房地产和企业管理领域发展的各界人士。 7、正在从事和希望从事数据分析相关工作的其他相关人士。 欧普特供应链学院为您解答!我是来自农村的一名很普通的女孩,17年大学毕业,现在在杭州一家大数据公司做分析师。想跟大家分享一下,我是如何从刚毕业的一张白纸,成长为一名大数据分析师的,希望我的学习成长心路历程,能够给到现在想往大数据分析行业发展的小伙伴一些参考。 我刚毕业的时候和现在许多学弟学妹一样,都非常迷茫,因为我对自己未来并没有一个非常清晰的职业规划,我不知道自己能够做什么?心里还有一些自卑,因为即便我很爱我的大学,但不得不承认,它只是一个很普通的大学,并非985、211。在如今大学生多如牛毛,激烈的就业环境中,我的学历和专业并没有太大竞争力,也有些后悔为什么大学期间没有再认真努力一些,但为时已晚。毕业,意味着新的人生起点,必须要勇敢面对,未来只能靠自己的能力在社会上生存和发展。 于是,就这样,带着对母校和同学们的不舍、对社会的彷徨、对自己内心的恐惧、以及家人给予我的期望迈入社会,开始了我的求职之路。找了半个月的工作,面试20来家,有3家成功的,但是开的工资最高3500一个月,并且2家是销售岗位,1家也不是我本专业的岗位(我的专业是信息与计算科学),我算了一下,就算我接受这些陌生并且不喜欢的岗位,在杭州这样的城市,合租房包水电物业费也得1500左右,公交一个月最少200,生活费最少900,电话费100,3500一个月的工资还要扣除五险一金,每个月还要倒贴。我简直快奔溃了,感觉自己很没用,连独立在城市生存下去的能力都没有,心里非常的沮丧。 也许命运就是这样,当你面临几乎绝望的时候,往往能审视自己,明白自己真的想要什么,静下心来的时候,我问自己,为什么企业不要我这样的学生?答案其实大家都知道,一是没有工作经验,二是啥都不懂不能为企业创造价值;三是面试的时候紧张、不自信、没有很好的表现自己。按这个逻辑分析下去,再找半个月我也不指望能出现奇迹,可能连我最后一点的自信都会被打击光。我隐约的感觉到需要重新定位自己,需要与其他同学拉开区分度,目前我学的这个专业和知识好像与企业要求的能力相差太大,如此分析后,摆在我面前的路有三条,一是接受3500的工作,熬个一年半载希望能加点工资,让自己在杭州生活下去,以后再谋发展;二是回老家的小城市随便找个工作以后结婚过日子;三是选择一个现在人才缺口大的行业,并且未来有前景的职业从头开始学习,这样至少我还比别人快一步。 去年社会上最热门的字眼就是人工智能、大数据,当时我在网上查了很多信息,看了很多新闻,也在招聘网站上查询大数据岗位的薪资和招聘人数及技术要求等情况,我发现大数据行业分二个方向,一是大数据工程开发类,二是大数据分析类,开发类的编程要求比较高,而分析类的编程技术要求相对低些,在网上找了一些分析课程听了一下,感觉还挺有意思的,也能听懂,相比与开发类,自己更喜欢也更适合分析类,所以就下定决心往数据分析这个方向进行学习。后面我花了10来天的时间去了解数据分析的前景和学习路径,但是网上的信息太杂乱,只能了解一个大概,在网上买了一些课,也买了好几本书,一个星期下来还是毫无头绪,本以为把HADOOP学会就能入门了,结果发现HADOOP搭建会了后面的SPARK太吃力;这时候我感觉还是需要去正式培训一下,自学找不到方向,也比较浪费时间;上天还是比较眷顾我的,我记得是去年的7月初,我在网上查大数据分析培训的时候,发现阿里云和他的内容提供商杭州决明数据科技联合推出一个《阿里云大数据分析师企业实战训练营》,需要选拨才能进入,抱着对阿里云品牌的信任,我进行了考试筛选,当时考的内容是两部分,一是数据库、二是C语言和JAVA;说真的JAVA一窍不通,没想到第二天接到通知说通过了,接下来需要电话面试,我当时就怀疑是不是骗人的,在电话面试的时候我就问了负责的老师,老师说是从250多个报名参加的学生中选10个人参加,主要是为新研发出来的课程体系做实验,我作为计算机相关专业、不懂JAVA只懂数据库的学生样本被选中了,另外面试沟通表达能力必须通过。突然有种被实验的感觉,这不是拿我做小白鼠嘛,我问还有其他样本是怎么样的,负责老师说,有一个是大三未毕业数学统计专业的、有一个机械工程三本学生、有一个软件开发专业的一本学生、有一个工作三年软件开发的学生、有一个工商管理专业的学生……我的个神了,当时就蒙圈了,这玩意万一实验失败我钱不就白花了,还浪费1个多月时间,我给父母说后没一个人支持我的,直到7月9号正式开营的前一天我才想明白一件事,在中国连阿里云这样的企业目前都没有一套完整的科学的课程体系,那其他家肯定也没有,如果是骗人的负责老师也没必要把做实验这事情给我说的这么清楚,最后一天选择了这个训练营,其实心里非常忐忑不安。 集训营10个同学一起学习35天,近2个月时间,经过系统的训练,我们10个同学被杭州7家企业录用,全部是数据分析岗位,有去电信的、有去外贸企业的、有去金融企业的、有去阿里系相关企业的,我和那个大三的学弟一起去了阿里系的企业,我试用期,他实习期,大家都非常的开心,说真的非常感谢阿里云和阿里云的合作伙伴决明数据科技的老师们,当时给我们上课的全部都是决明的老师,老师们都非常的专业负责,公司本来就是做企业商业数据咨询的,所以有很多商业案例跟我们分享,用的实验平台是九道门商业数据分析实验平台。 从小白鼠到入行,到现在也有小三年工作经验的我,给大家一个学数据分析师的学习路径,仅供大家参考; 1、 建议大家先学习MYSQL关系数据库,在分析师岗位上数据库是经常要用到的,也是必须要会的; 2、 建议大家接下来学习数据建模、数据仓库,ETL数据清洗,特别在工作中数据质量管理是比较重的,ETL是经常用的(当然数据清洗工具也有其他的,ETL是大家通用的); 3、 HADOOP分布式其实在分析师这个岗位上用的比较少,了解就可以了,因为现在分布式这块大公司都有现成的工具用,连搭建都不需要,直接用就可以了,非常方便。 4、 分析工具还是需要好好学一下的,建议大家学Python,现在公司里面大部分都是用这个,EXCEL也需要学习学习,一些小的数据集和简单的BI报表还是比较方便的。当然分析工具比较多比如R、SPSS,SAS等都是工具,就看你自己用什么了,会用一个熟练的工具就可以了。另外Python功能非常强大,也不需要研究太深,其实工作做在做项目的时候经常用很快就能学会的,毕竟只是个工具,就像EXCEL要想全部弄清楚所有功能那可不是一天二天的事情,而我们日常经常用的也就是那点东西。 5、 接下来需要学习机器学习,原来叫数据挖掘,现在叫机器学习,也有的叫人工智能,这个需要大家花点时间去学习了,我现在经常用的比如决策树、回归问题、分类问题、聚类问题、降维问题等,还有预测、无监督、最优化也经常用到,这门学科可能是需要我们长时间学习和研究的。 6、 算法方面其实我没有学过,在项目组里面有专门的算法工程师,另外有些通用算法是可以套用的,所以这方面我觉得项目组团队可以配合来做,这方面本人没有经验不做建议。 7、 我现在觉得分析师最重要的是看待问题、处理问题的思路,在这一年工作中我发现团队的大牛们解决问题的思路和我们真不一样,在每次项目组会议的时候我感觉学到的东西最多,那就是解决问题的思路和能力;而且分析师还需要对业务深入了解,因为不同的行业数据结构和业务逻辑都是不一样的,需要花时间去理解和学习;同时我也感觉到作为数据分析师还需要学习商业思维和营销知识。 8、 另外一个就是数据可视化,这个主要是把我们分析出来的数据结构用图像、动画等按时呈现出来。我现在正在做的就是数据大屏,工具很多,BAT公司都有自己的工具,当时老师教我们的时候教的是 Tableau,个人感觉非常好用,这个随便自己喜好了,做大屏可能需要一点美术功底,当然现在模板比较多,也可以套用。 9、 其实在学习的过程中要想学得快,最好是从项目案例入手,当时阿里云和他的内容提供商决明数据就是先让我们训练九道门实验平台上的23个场景案例,数据集全部做好放在服务器里,和我们现在工作的场景很像。老师上午讲知识点,下午和晚上我们就是做实操实验,工具老师基本上都不讲,在做案例项目的时候用到什么临时去查,二次下来工具就上手了。最后一周是加拿大的赵强老师给我们训练了一个大项目,模拟一个企业的数据分析项目,那5天是我最刻苦铭心的,虽然压力很大,分组进行,但是5天时间把我们原来所学的东西全部串起来了,一下子思路就通了,最后每个人还要上台去讲,也培养了自己的沟通能力和演讲能力,整个项目流程下来,受益匪浅。赵老师原来为世界500强企业做过数据咨询项目的,又是加拿大舒立克商学院的MBA教授,项目经验丰富,确实是国内少有的专家大咖,是决明科技的创始人,也是我现在上班这家公司的项目顾问,多亏了赵老师的悉心指导,让我在成为大数据分析师的学习之路上少走了很多弯路,真的蛮感谢赵老师的,也希望大家在学习的路上都能遇到这样的良师益友。 10、 最后一个建议就是大家还需要学习学习PPT制作和演讲,最近我们项目要陆续交付,每次交付都需要向客户进行讲解,每个人做的部分由自己讲,所以PPT制作和演讲都需要训练,亚历山大。 说了这么多,只能代表我这一年来的经历和感受,也不知道对学弟学妹有没有帮助,反正如果你们想往大数据分析师这个职业发展的话,建议大家一定要从项目入手去学习,工具要学但是不要研究太深,会浪费时间,工作后用起来上手非常快,如果自学没有头绪,培训还是很有必要的,但一定要找专业方面的人进行培训,我觉得我还是非常幸运的,遇到了阿里云以及杭州决明科技的老师们,如果学弟学妹们有这样的想法,可以去了解一下,当时我们是第一批培训的,不知道他们现在还在不在做,他们集训就是从项目入手,跟我现在工作内容十分相似,虽然集训过程很辛苦学的也很累,但收获与影响是巨大的。 我当时集训结束的时候就拿到了两个个公司的OFFER,一个是全球排名前十的游戏营销咨询公司,一个是我现在上班的XX云公司;当时选择的时候其实很痛苦,两个个公司都非常不错,因为我是在阿里云实验班出来的,我还是选择了阿里系的企业。 如愿以偿进入了大数据分析职业,天天做项目,非常开心,我相信我自己能在杭州好好的工作,好好的生活下去,毕业季,也祝小伙伴们能和我一样幸运,找到自己喜欢的工作。 最后感谢阿里云和决明数据科技的老师,同时也推荐想学大数据分析的学弟学妹们去九道门商业大数据分析实训中心,因为专业所以认同。主要就是通过数据去解决企业实际遇到的问题,包括根据数据分析的原因和结果推理以及预测未来进行制定方案、对调研搜集到的各种产品数据的整理、对资料进行分类和汇总。具体的实例可以去阿里云大学官网做一些Clouder,增加对Python在项目中的使用场景理解,或者九道门商业大数据分析实验室官网,学习数据库、数据建模等大数据实例分析。 要学习Python、R、SAS等编程工具;对数据仓库需要了解可以去九道门做些实验项目;如果你觉得还是难,那就采用最基础的学习路径,直接买MYSQL关系型数据库的书看,随便到网上去找个免费的MYSQL课程听;;分布式存储HDOOP需要简单了解;云计算的技术作为了解就可以了;数据可视化不是很难,如果不要求特别美工的话,大家先理解图表,再研究研究仪表板,阿里云的Quich BI及DataV,百度的echarts都不错,主要是展示的业务结构需要规划;大数据技术:这个相对来说有些难度,如果是学数学统计类专业小伙伴就非常有优势了,其他专业的小伙伴也不用担心,毕竟工作后还可以继续学习,在工作中用的比较多的是聚类、关联、决策树、线性回归等,如果你不去做模型和算法工程师那么只需要会用就可以了,实在不行有专业的工具让我们用,阿里云的机器学习PAN是可以直接出结果的工具;。可以到天池大赛上去看一些案例,自己做做训练。如果自学的小伙伴觉得很难坚持,那就只能去报班了,九道门之类的,如果要成为大数据分析师的话就要时间沉定,或者让老师带你。
还没有评论,来说两句吧...