发表评论取消回复
相关阅读
相关 TensorFlow低阶API(四)—— 图和会话
简介 TensorFlow使用数据流图将计算表示为独立的指令之间的依赖关系。这可生成低级别的编程模型,在该模型中,您首先定义数据流图,然后创建TensorFlow会话,以
相关 TensorFlow低阶API(三)—— 变量
简介 TensorFlow变量是表示程序处理的共享持久状态的最佳方法。 我们使用tf.Variable类操作变量。tf.Variable表示可通过其运行操作来改变其值的
相关 TensorFlow低阶API(二)—— 张量
简介 正如名字所示,TensorFlow这一框架定义和运行涉及张量的计算。张量是对矢量和矩阵向潜在的更高维度的泛化。TensorFlow在内部将张量表示为基本数据类型的n
相关 TensorFlow低阶API(一)—— 简介
简介 本文旨在知道您使用低级别TensorFlow API(TensorFlow Core)开始编程。您可以学习执行以下操作: 管理自己的TensorFlow程序
相关 tensorflow_张量的理解
开始学习tensorflow了,张量是tensorflow最基础的概念,我发现自己还不会。学习的视频中,老师也没讲到,只是一带而过,刚刚参考了几篇博客,对张量大概有个了解,但是
相关 TensorFlow的张量Tensor
张量(tensor)可以看作是向量、矩阵的自然推广,用来表示广泛的数据类型。0阶张量即标量,也就是一个数;1阶张量就是一个向量;2阶张量就是一个矩阵;3阶张量可以称为一个立方体
相关 TensorFlow数据模型-张量
张量是TensorFlow管理数据的形式,可以被简单的理解为多维数组。零阶张量表示标量,一阶张量表示向量,n阶张量表示n维数组。张量并没有保存数字,保存的是运算结果的引用。例如
相关 Python TensorFlow,张量,张量的形状、类型、阶
张量是一个类型化的N维数组(tf.Tensor),由三部分组成:名字,形状,数据类型。 张量的阶: ![watermark_type_ZmFuZ3poZW5naGVpdGk
相关 TensorFlow基础:张量
一. 张量的定义 不管是几阶,都是张量 ![在这里插入图片描述][watermark_type_ZmFuZ3poZW5naGVpdGk_shadow_10_text_aH
相关 AI - TensorFlow - 张量(Tensor)
张量(Tensor) 在Tensorflow中,变量统一称作张量(Tensor)。 张量(Tensor)是任意维度的数组。 0阶张量:纯量或标量 (scalar
还没有评论,来说两句吧...