发表评论取消回复
相关阅读
相关 paddle硬标签交叉熵算法和软标签交叉熵算法
paddle硬标签交叉熵算法和软标签交叉熵算法 前言 最近在使用paddle深度学习框架进行项目实战,拿来练手的项目是手写数字集识别,所用到的损失值计算方式是交叉熵
相关 信息熵、相对熵(KL散度)和交叉熵
[https://blog.csdn.net/weixin\_37688445/article/details/104113465][https_blog.csdn.net_w
相关 交叉熵损失函数
一、香农熵 香农熵 1948 年,香农提出了“ [信息熵][Link 1]”(shāng) 的概念,才解决了对信息的量化度量问题。 一条
相关 【机器学习】熵(信息熵,联合熵,交叉熵,互信息)
机器学习中的各种熵,什么是熵?什么是交叉熵?什么是联合熵?什么是条件熵?什么是相对熵?它们的联系与区别是什么? 前言:你必须知道的信息论 1948年,数学家和电气工程师
相关 【ML Method】熵、联合熵、条件熵、互信息、相对熵、交叉熵
更新时间:2018-07-18 前言 之前有写过一篇文章介绍信息增益、Gini、信息增益率的,上面介绍过熵及其相关概念,地址为:[https://blog.csd
相关 交叉熵与多维度交叉熵
关于交叉熵的定义与解释,请看这篇文章: [https://baijiahao.baidu.com/s?id=1618702220267847958&wfr=spider&fo
相关 概率公式、条件熵、交叉熵、相对熵、互信息
> 搞清概念是学习的重点工作,其实知识就是由一个又一个宝贵的概念堆叠出来的。 概率公式 条件概率: P ( A ∣ B ) = P ( A , B ) P ( B
相关 交叉熵和MSE
损失函数 交叉熵损失函数:来自于信息论,衡量的是概率分布,所以适合分类任务。 均方误差MSE:不适用于分类,适合回归,因为分类任务求出来的值0-1之间,比较小,mse
还没有评论,来说两句吧...