发表评论取消回复
相关阅读
相关 【机器学习(7)】特征工程:共线性、降维、扩展
1. 共线性 1) 特征间共线性: 两个或多个特征包含了相似的信息,期间存在强烈的相关关系 2) 常用判断标准: 两个或两个以上
相关 系统学习机器学习之特征工程(三)--多重共线性
什么是多重共线性? 回归中的多重共线性是一个当模型中一些预测变量与其他预测变量相关时发生的条件。严重的多重共线性可能会产生问题,因为它可以增大回归系数的方差,使它们变得不
相关 【机器学习】特征工程—— 特征预处理
特征工程 定义:将原始数据转换为更好地代表预测模型的潜在问题的特征的过程,从而提高了对未知数据的预测准确性。 内容:主要有三部分: 1、特征抽取 2、
相关 【机器学习】特征工程 —— 特征抽取
特征工程 定义:将原始数据转换为更好地代表预测模型的潜在问题的特征的过程,从而提高了对未知数据的预测准确性。 内容:主要有三部分: 1、特征抽取 2、
相关 人工智能-机器学习-特征工程
我们用泰坦尼克号事件生还者信息举例, 采用KNN算法预测某个人的生还率, 采用KNN临近算法 数据链接: [泰坦尼克号csv数据集][csv] 一.利用pandas观察
相关 机器学习之特征工程-数据预处理
[https://www.jianshu.com/p/23b493d38b5b][https_www.jianshu.com_p_23b493d38b5b] [http
相关 机器学习之特征工程
特征工程是什么?首先我们来说一说特征。特征是数据中抽取出来的对结果预测有用的信息,可以是文本或是数据。特征工程是使用专业背景知识和技巧处理数据,使得特征能在机器学习算法上发挥更
相关 机器学习之特征工程
特征工程 一、简介 特征是指数据中抽取出来的对结果预测有用的信息 特征工程是使用专业背景和技巧处理数据,使得特征能在机器学习算法上发挥更好的作用的过程。
相关 机器学习实战——特征工程之特征构建
特征构建是指通过研究原始数据样本,结合机器学习实战经验和相关领域的专业知识,思考问题的潜在形式和数据结构,人工创造出新的特征,而这些特征对于模型训练又是有益的并且具有一定的工程
相关 机器学习——特征工程
文章目录 1. 为什么需要对数值类型的特征做归一化? 2. 怎样处理类别型特征? 3. 怎样处理高维组合特征? 4. 怎样有效地找到组合特征?
还没有评论,来说两句吧...