发表评论取消回复
相关阅读
相关 对BN(batch normlization)层的理解
言:BN层作为当前应用十分广泛的一中抗过拟合、加速模型收敛的手段,效果可以说是十分好用,但是究其原因或者说理解,很多人也是从不同方面有所解释,这篇就尽量包罗的多一些,加上...
相关 python 进行卷积
Python 中可以使用 numpy 库来实现卷积操作。 具体方法为使用 numpy.convolve() 函数,该函数的第一个参数为被卷积的信号,第二个参数为卷积核(也叫滤
相关 如何对图片进行卷积计算
1 问题 如何对图片进行卷积计算? 2 方法 先导入torch和torch里的nn类,然后设置一个指定尺寸的随机像素值的图片,然后使用nn.conv2d函数进行卷积计
相关 CNN全连接层和卷积层的转化
0. 前言 自AlexNet网络在ImageNet LSVRC-2012的比赛中,取得了top-5错误率为15.3%的成绩后卷积神经网络CNN在图像深度学习中成为不可缺少
相关 卷积神经网络-卷积层
卷积层的一些性质: ( 1 )输入数据体的尺寸是 W1 \ H1 \ D1。 ( 2 ) 4 个超参数:滤波器数K, 滤波器 空间 尺寸F, 滑动
相关 卷积层和BN层融合
解释也不错: [https://my.oschina.net/u/4395251/blog/4769266][https_my.oschina.net_u_4395251_b
相关 对ONNX模型进行BN和卷积层的融合
import onnx import os from onnx import optimizer Preprocessing: lo
相关 卷积神经网络——输入层、卷积层、激活函数、池化层、全连接层
转自:[https://blog.csdn.net/qq\_27022241/article/details/78289083][https_blog.csdn.net_qq_
相关 提升模型推理速度:合并BN层到卷积层
参考文章:[https://blog.csdn.net/kangdi7547/article/details/81348254][https_blog.csdn.net_kan
还没有评论,来说两句吧...