发表评论取消回复
相关阅读
相关 【机器学习】 特征工程:特征预处理,归一化、标准化、处理缺失值
特征预处理采用的是特定的统计方法(数学方法)将数据转化为算法要求的数字 1. 数值型数据 归一化,将原始数据变换到\[0,1\]之间 标准化,数据转化到均值为0,方差
相关 【机器学习】特征工程:特征预处理,归一化、标准化、处理缺失值
特征预处理采用的是特定的统计方法(数学方法)将数据转化为算法要求的数字 1. 数值型数据 归一化,将原始数据变换到\[0,1\]之间 标准化,数据转化到均值为0,方差
相关 sklearn 特征预处理,归一化和标准化,缺失值处理
目录 1.什么是特征处理 2.不同的特征数据处理方式 3.归一化 公式 公式讲解 sklearn 归一化实例 归一化的运用场景 归一化的缺点——异常点 4.标
相关 「Python 数据处理基础」数据特征处理离散化和二值化应用
文章目录 数据离散化和类型 数据离散化和类型 操作数据的逻辑分层,所谓离散化是将无限空间中的有限个体映射到有限空间。数据离散化操作主要在连续数据上执行。处理
相关 「Python 数据处理基础」数据特征处理标准化和归一化应用
文章目录 内容介绍 标准化&归一化 红酒数据集进行标准化&归一化 标准化处理对PCA主成分分析的影响 内容介绍 数据标准化 :是使数据落入
相关 数据标准化和归一化
1、综述 1.1原理介绍 归一化方法: 1、把数变为(0,1)之间的小数 主要是为了数据处理方便提出来的,把数据映射到0~1范围之内处理,更加便捷
相关 数据标准化/归一化normalization
这里主要讲连续型特征归一化的常用方法。离散参考\[[数据预处理:独热编码(One-Hot Encoding)][One-Hot Encoding]\]。 基础知识参考:
相关 数据标准化/归一化normalization
http://[blog.csdn.net/pipisorry/article/details/52247379][blog.csdn.net_pipisorry_articl
相关 特征归一化处理
介绍 机器学习中,提取某个样本特征的过程,叫`特征工程`。 同一个样本,可能具备不同类型的特征,各特征的数值大小范围不一致。所谓`特征归一化`,就是将不同类型的特征数
相关 数据预处理—剔除异常值,平滑处理,标准化(归一化)
数据预处理的主要任务如下: (1)数据清理:填写空缺值,平滑噪声数据,识别,删除孤立点,解决不一致性 (2)数据集成:集成多个数据库,数据立方体,文件 (3)
还没有评论,来说两句吧...