发表评论取消回复
相关阅读
相关 【数据挖掘】KNN算法详解及对iris数据集分类实战(超详细 附源码)
> 需要源码请点赞关注收藏后评论区留言私信~~~ K近邻(k-Nearest Neighbor Classification,KNN)算法是机器学习算法中最基础、最简单的算法
相关 数据挖掘决策树分类算法简介
决策树是以实例为基础的归纳学习算法。它从一组无次序、无规则的元组中推理出决策树表示形式的分类规则。它采用自顶向下的递归方式,在决策树的内部结点进行属性值的比较,并根据不同的属性
相关 数据挖掘-ionosphere数据集-k近邻算法-分类预测
!/usr/bin/env python2 -- coding: utf-8 -- 检测系统用户路径 import os h
相关 数据挖掘-Iris数据集分析-决策边界_根据花瓣数据绘制(七)
coding: utf-8 使用花瓣测量数据绘制 2D散点图,并绘出决策边界 import numpy as np import mat
相关 数据挖掘-Iris数据集分析-决策边界(六)
coding: utf-8 使用萼片测量数据绘制 2D散点图,并绘出决策边界 import numpy as np import mat
相关 数据挖掘-oneR算法-Iris数据集分析-使用oneR算法进行分类预测(五)
接上一篇,使用 oneR算法来实现iris分类. coding: utf-8 使用oneR算法来实现iris分类 参考: http://w
相关 数据挖掘-K-近邻分类器-Iris数据集分析-使用K-近邻分类器进行分类预测(四)
coding: utf-8 使用 scikit-learn库的K-近邻分类器完成分类 1. 首先将数据集中的数据进行打乱 2. 将数据分为训练
相关 数据挖掘系列(5)分类算法评价
一、引言 分类算法有很多,不同分类算法又用很多不同的变种。不同的分类算法有不同的特定,在不同的数据集上表现的效果也不同,我们需要根据特定的任务进行算法的选择,如何选择分类
相关 数据挖掘 - task 3: 各类分类算法
前言 用逻辑回归、svm和决策树;随机森林和XGBoost进行模型构建,评分方式任意,如准确率等。 决策树 import pandas as pd
还没有评论,来说两句吧...