发表评论取消回复
相关阅读
相关 最长不下降子序列
Problem B: So easy Time Limit: 2 Sec Memory Limit: 128 MB Submit: 34 Solved: 11
相关 2017 ACM-ICPC 亚洲区(南宁赛区)网络赛 I GSM Base Station Identification(暴力,计算几何)
In the Personal Communication Service systems such as GSM (Global System for Mobile Comm
相关 2017 ACM-ICPC 亚洲区(南宁赛区)网络赛 G. Finding the Radius for an Inserted Circle(计算几何,二分)
Finding the Radius for an Inserted Circle Three circles C\_\{a\}Ca, C\_\{b\}Cb, a
相关 2017 ACM-ICPC 亚洲区(南宁赛区)网络赛 A Weather Patterns(阅读理解)
Weather Patterns Consider a system which is described at any time as being in one of
相关 2017 ACM-ICPC 亚洲区(南宁赛区)网络赛 J. Minimum Distance in a Star Graph(bfs+状态保存)
In this problem, we will define a graph called star graph, and the question is to find t
相关 2017 ACM-ICPC 亚洲区(南宁赛区)网络赛 L. The Heaviest Non-decreasing Subsequence Problem(最长不下降子序列变形)
Let SS be a sequence of integers s\_\{1\}s1, s\_\{2\}s2, ......, s\_\{n\}sn Each integer
相关 2017 ACM-ICPC 亚洲区(南宁赛区)网络赛 F. Overlapping Rectangles(扫描线)
There are nn rectangles on the plane. The problem is to find the area of the union of th
相关 2017 ACM-ICPC 亚洲区(南宁赛区)网络赛 B.Train Seats Reservation(模拟)
You are given a list of train stations, say from the station 11 to the station 100100.
相关 2017青岛赛区亚洲区域赛网络赛 The Dominator of Strings
Problem Description Here you have a set of strings. A dominator is a string of the
相关 2017 ACM-ICPC 亚洲区(西安赛区)网络赛
哎,题目难度挺大的,我们就做了三个题目。深深的见识到自己的水平不行啊,膜拜清北上啊! 分别是 B题: ![Center][]
还没有评论,来说两句吧...