发表评论取消回复
相关阅读
相关 深度学习基础-优化算法详解
前言 所谓深度神经网络的优化算法,即用来更新神经网络参数,并使损失函数最小化的算法。优化算法对于深度学习非常重要,如果说网络参数初始化(模型迭代的初始点)能够决定模型是否
相关 深度学习基础-优化算法详解
前言 所谓深度神经网络的优化算法,即用来更新神经网络参数,并使损失函数最小化的算法。优化算法对于深度学习非常重要,如果说网络参数初始化(模型迭代的初始点)能够决定模型是否
相关 深度学习优化函数优化函数
![1598479-20190918171750841-25124104.png][] 转载于:https://www.cnblogs.com/yunshangyue7
相关 深度学习中常用的优化算法(SGD, Nesterov,Adagrad,RMSProp,Adam)总结
深度学习中常用的优化算法(SGD, Nesterov,Adagrad,RMSProp,Adam)总结 1. 引言 在深度学习中我们定义了损失函数以后,会采取各种各样
相关 深度学习优化函数详解(6)-- adagrad
深度学习优化函数详解系列目录 深度学习优化函数详解(0)– 线性回归问题 深度学习优化函数详解(1)– Gradient Descent 梯度下降法 深度学习优化函
相关 深度学习优化函数详解(5)-- Nesterov accelerated gradient (NAG)
深度学习优化函数详解系列目录 深度学习优化函数详解(0)– 线性回归问题 深度学习优化函数详解(1)– Gradient Descent 梯度下降法 深度学习优化函
相关 深度学习优化函数详解(4)-- momentum 动量法
深度学习优化函数详解系列目录 深度学习优化函数详解(0)– 线性回归问题 深度学习优化函数详解(1)– Gradient Descent 梯度下降法 深度学习优化函
相关 深度学习优化函数详解(2)-- SGD 随机梯度下降
深度学习优化函数详解系列目录 深度学习优化函数详解(0)– 线性回归问题 深度学习优化函数详解(1)– Gradient Descent 梯度下降法 深度学习优化函
相关 深度学习优化函数详解(0)-- 线性回归问题
深度学习优化函数详解系列目录 深度学习优化函数详解(0)– 线性回归问题 深度学习优化函数详解(1)– Gradient Descent 梯度下降法 深度学习优化函
相关 深度学习各种优化算法(BGD,SGD,Momentum,AdaGrad,RMSProp,Adam)
標準梯度下降法: 彙總所有樣本的總誤差,然後根據總誤差更新權值 SGD隨機梯度下降: mini batch代替全部樣本 曲面的某個方向更加陡峭的時候會被困住
还没有评论,来说两句吧...