hadoop_mapreduce_MRUtil 快来打我* 2022-05-25 06:28 60阅读 0赞 1. 导入jar包 MRUnit的jar包: ![20180509155040636][] 如果是直接导入的话,需要导入mrunit-1.1.0-hadoop2.jar,及上面压缩文件中lib下的所有jar包: ![20180509155102133][] 除了mockito-core-1.9.5.jar,因为会有冲突。 如果是maven项目,导入: 2. 测试maper 添加一个新类WordCountUnitTest: **package** com.harvetech.wordcount; **import** java.io.IOException; **import** org.apache.hadoop.io.LongWritable; **import** org.apache.hadoop.io.Text; **import** org.apache.hadoop.mrunit.mapreduce.MapDriver; **import** org.junit.Test; **public** **class** WordCountUnitTest \{ @Test **public** **void** testMapper() **throws** IOException\{ //设置一个环节变量 System.*setProperty*("hadoop.home.dir", "D:\\\\work\\\\hadoop-2.6.0\\\\bin"); //创建一个测试的对象 WordCountMapper mapper = **new** WordCountMapper(); //创建一个MappeDriver来进行测试 MapDriver<LongWritable, Text, Text, LongWritable> driver = **new** MapDriver<LongWritable, Text, Text, LongWritable>(mapper); //指定Map输入的数据: K1,V1 driver.withInput(**new** LongWritable(1), **new** Text("I love Beijing")); //指定Map输出的数据,k2,v2 ------> 期望得到数据 driver.withOutput(**new** Text("I"), **new** LongWritable(1)) .withOutput(**new** Text("love"), **new** LongWritable(1)) .withOutput(**new** Text("Beijing"), **new** LongWritable(1)); //执行测试:对比实际运行的结果和期望得到的结果是否一致?? driver.runTest(); \} \} 其中map的输出是指期望值,如果最后运行结果和此结果相同,则测试成功,不同则测试失败。 运行结果如下: ![20180509155131604][] 结果行为绿色,测试成功。 如果把mapper中的输出改为4,即: //输出: k2 v2 **for**(String w:words)\{ context.write(**new** Text(w), **new** LongWritable(4)); \} 再次测试,运行报错,结果行为红色: ![201805091552052][] 错误内容如下,期望结果是(1,1),实际结果为(1,4): java.lang.AssertionError: 3 Error(s): (Missing expected output (I, 1) at position 0, got (I, 4)., Missing expected output (love, 1) at position 1, got (love, 4)., Missing expected output (Beijing, 1) at position 2, got (Beijing, 4).) 再来解释一下设置环境变量这行: System.*setProperty*("hadoop.home.dir", "D:\\\\work\\\\hadoop-2.6.0\\\\bin"); 如果没有此行,运行会提示一个错误,但不影响测试结果: ![20180509155244502][] 这是因为在window下运行hadoop的mapreduce程序,需要用到hadoop提供的一个工具:winutils.exe,这个工具在hadoo的bin目录下,因此需要配置环境变量,如果在电脑的环境变量中已设置了,在上面的代码中就不需要再设置。 D:\\work\\hadoop-2.6.0\\bin ![20180509155314492][] 3. 测试reduce 和测试mapper类似: @Test //测试WordCountReducer程序 **public** **void** testReducer() **throws** Exception\{ //创建一个测试对象 WordCountReducer reducer = **new** WordCountReducer(); //创建一个ReduceDriver //ReduceDriver<k3, V3, K4, V4> ReduceDriver<Text, LongWritable, Text, LongWritable> driver = **new** ReduceDriver<Text, LongWritable, Text, LongWritable>(reducer); //指定Reducer输入的数据 //构造v3,是一个集合 List<LongWritable> v3 = **new** ArrayList<LongWritable>(); //往v3中加入v2 v3.add(**new** LongWritable(1)); v3.add(**new** LongWritable(1)); v3.add(**new** LongWritable(1)); driver.withInput(**new** Text("Beijing"), v3); //指定Reducer输出的数据------> 期望得到的数据 driver.withOutput(**new** Text("Beijing"), **new** LongWritable(3)); //-----> 指定key4和value4 //执行单元测试 driver.runTest(); \} 运行,测试成功: ![20180509155343661][] 4. 测试job @Test //测试Job程序 **public** **void** testJob() **throws** Exception\{ //创建测试对象 WordCountMapper mapper = **new** WordCountMapper(); WordCountReducer reducer = **new** WordCountReducer(); //创建一个Driver //MapReduceDriver<K1, V1, K2, V2, K4, V4> MapReduceDriver<LongWritable, Text, Text, LongWritable,Text, LongWritable> driver = **new** MapReduceDriver<LongWritable, Text, Text, LongWritable, Text, LongWritable>(mapper,reducer); //指定Map输入的数据 driver.withInput(**new** LongWritable(1), **new** Text("I love Beijing")) .withInput(**new** LongWritable(4), **new** Text("I love China")) .withInput(**new** LongWritable(7), **new** Text("Beijing is the capital of China")); //注意:排序 driver.withOutput(**new** Text("Beijing"), **new** LongWritable(2)) .withOutput(**new** Text("China"), **new** LongWritable(2)) .withOutput(**new** Text("I"), **new** LongWritable(2)) .withOutput(**new** Text("capital"), **new** LongWritable(1)) .withOutput(**new** Text("is"), **new** LongWritable(1)) .withOutput(**new** Text("love"), **new** LongWritable(2)) .withOutput(**new** Text("of"), **new** LongWritable(1)) .withOutput(**new** Text("the"), **new** LongWritable(1)); //执行单元测试 driver.runTest(); \} 运行,测试成功: ![20180509155413670][] [20180509155040636]: /images/20220525/674a842379b642d988a44c92591040a6.png [20180509155102133]: /images/20220525/1c6d2d13e34c46c6b69de605e54317c8.png [20180509155131604]: /images/20220525/cd83263f999a464b924ec6821f97f7f5.png [201805091552052]: /images/20220525/ce6dd46dd16241e38355b7b5eaa51bf9.png [20180509155244502]: /images/20220525/af9bc24797704e4ca829148fe5d02d74.png [20180509155314492]: /images/20220525/a3a0b6618b5d4ebd9b95de768c5fa340.png [20180509155343661]: /images/20220525/8e86b00686e2425a8a0aed422896ba0e.png [20180509155413670]: /images/20220525/03ca0f2952434e5fa287c9005d911f52.png
还没有评论,来说两句吧...