发表评论取消回复
相关阅读
相关 信息熵和决策树
在预测分析领域,决策树是可应用于回归和分类任务的算法之一 决策树背后的想法是,根据数据集中的特征对当时响应变量的贡献方式,递归地构建一个颠倒的树状结构。 在每次迭代中,将以
相关 信息熵及其相关概念
https://blog.csdn.net/am290333566/article/details/81187124 转载于:https://www.cnblogs.com/
相关 信息熵、信息增益
关于信息熵、信息增益的一些思考 1.为什么信息熵越大,蕴含的信息量越多? 拿二分类问题来说,首先信息熵的公式是 Ent(D) = -(p\log\_2( p)+(
相关 决策树信息熵数理剖析
[2019独角兽企业重金招聘Python工程师标准>>> ][2019_Python_] ![hot3.png][] 文:张一极 更多人工智能相关文章:[http://sil
相关 信息增益、信息增益率、gini、特征选择、决策树
先简单介绍一下概念 熵:表示随机变量的不确定性。 条件熵:在一个条件下,随机变量的不确定性。 信息增益:熵 - 条件熵。在一个条件下,信息不确定性减少的程度
相关 信息增益-香农熵
在划分数据集之前之后信息发生的变化称为信息增益,计算每个特征值划分数据集获得的信息增益,获得信息增益最高的特征就是最好的选择。 集合信息的度量方式称为香农熵或者简称为熵,熵
相关 决策树中信息、熵、信息增益、基尼指数的概念及其python实现
from:http://www.cnblogs.com/fantasy01/p/4581803.html?utm\_source=tuicool 关于对信息、熵、信息增益是信
相关 决策树---信息增益,信息增益比,基尼指数的理解
一、决策树 决策树是表示基于特征对实例进行分类的树形结构。 从给定的训练数据集中,依据特征选择的准则,递归的选择最优划分特征,并根据此特征将训练数据进
相关 决策树--信息增益,信息增益比,Geni指数的理解
转自:[https://www.cnblogs.com/muzixi/p/6566803.html][https_www.cnblogs.com_muzixi_p_656680
相关 信息熵与信息增益
前言 熵在机器学习中用的非常普遍,但这个又难以理解,经常忘记,写一篇博客记录一下,也方便其他人学习了解。 什么是熵 一开始接触熵是大二的信息论,非常难的一门课,当
还没有评论,来说两句吧...