发表评论取消回复
相关阅读
相关 机器学习之逻辑回归
一、什么是逻辑回归? 回归的解释: 解释一:假设现在有一些数据点,我们用一条直线对这些点进行拟合,这个拟合过程就称为回归。 解释二:观察所有训练样本点(x,y)符合哪
相关 [机器学习]逻辑回归
在分类问题中,不能再直接代入y=kx+b\1这种. ![70][] 而是直接采用逻辑回归 1/1+(e^-z) 这个e为自然底数 约等于2.178 z=thet
相关 机器学习(2)回归与分类
1 回归与分类 线性回归的损失函数选择时候,基于误差分布的客观假定,通过最大似然的计算法则得出了损失函数。其实在对一个样本分布进行建模和预测的时候,更本质上来讲是对一个
相关 机器学习2 分类与逻辑回归
分类问题和线性回归问题很像,只是在分类问题中我们预测的 y y 值包含在一个小的离散数据集里。首先,认识一下二元分类(binary classification),在二元分
相关 机器学习算法系列(2)--逻辑回归
本文转载自[Logistic-Regression|endymecy][Logistic-Regression_endymecy] 逻辑回归 一、二元逻辑回归 回
相关 机器学习-逻辑回归
基本知识 Sigmoid函数 逻辑回归用于二分类任务, 我们在将特征的实值转化为分类的二元离散值时, 想要的最理想的函数是单位跃迁函数 即: ![y=\\left
相关 机器学习-逻辑回归总结
分类问题 与线性回归不同,Logistic回归虽然带有"回归"二字,但是并不是回归问题,属于分类问题。简单介绍一下,什么是分类问题。 在监督学习中,当输出变量Y取有限
还没有评论,来说两句吧...