发表评论取消回复
相关阅读
相关 Python机器学习算法如何实现
Python机器学习算法实现 在上一讲中,我们讲到了经典的[朴素贝叶斯][Link 1]算法。朴素贝叶斯的一大特点就是特征的条件独立假设,但在现实情况下,条件独立这个假设通常
相关 【机器学习】Kmeans聚类算法
一、聚类简介 Clustering (聚类)是常见的unsupervised learning (无监督学习)方法,简单地说就是把相似的数据样本分到一组(簇),聚类的
相关 kmeans聚类算法python实现
以下是使用Python实现k均值(k-means)聚类算法的示例代码: import numpy as np def k_means(data, k
相关 Kmeans算法实现
K-均值算法,是非监督学习中的聚类算法。 基本思想 k-means算法比较简单。在k-means算法中,用cluster来表示簇;容易证明k-means算法收敛等同于所有质
相关 机器学习_KMeans聚类算法的学习(Python实现)
> Kmeans算法是最常用的聚类算法。 > 主要思想是:在给定K值和K个初始类簇中心点的情况下,把每个点(亦即数据记录)分到离其最近的类簇中心点所代表的类簇中,所有点分配
相关 2、机器学习算法KMeans -- Java代码
KMeans是属于无监督的分类算法。 代码采用的KMeans++,事先选取指定的聚类中心。 package algorithm.machine;
相关 机器学习——线性回归的自定义实现
一 线性回归(Linear Regression) 1. 线性回归概述 回归的目的是预测数值型数据的目标值,最直接的方法就是根据输入写出一个求出目标值的计算公式,也就是
相关 Python机器学习算法实践——梯度上升算法
一:理论部分 给定一个样本集,每个样本点有两个维度值(X1,X2)和一个类别值,类别只有两类,我们以0和1代表。数据如下所示: <table style="width:
相关 Python机器学习算法实践——二分k-均值算法
二分k-均值算法步骤: 首先将所有点作为一个属,然后将该簇-分为二,之 后选择其中-个簇进续进行划分,选择哪一个簇进行划取决于对其划分是否可以最大程度降低SSE的值,上述
相关 Python机器学习算法实践_自定义实现kmeans
k-means算法步骤: 1.随机选取k个质心(k值取决于你想聚成几类) 2.计算样本到质心的距离,距离质心距离近的归为一类,分为k类 3.求出分类后的
还没有评论,来说两句吧...