发表评论取消回复
相关阅读
相关 机器学习-无监督学习-聚类:聚类方法(五)--- 均值漂移聚类
均值漂移聚类是基于滑动窗口的算法,来找到数据点的密集区域。这是一个基于质心的算法,通过将中心点的候选点更新为滑动窗口内点的均值来完成,来定位每个组/类的中心点。然后对这些候选窗
相关 PCA实现鸢尾花数据集降维可视化
基于《Python机器学习》——北京理工大学 学习笔记 PCA实现高维数据可视化 数据来源 > http://archive.ics.uci.edu/ml/d
相关 监督式学习、无监督式学习、无监督式学习 --概念区分
机器学习可以分为: • 监督式学习:有标签。给出定义好的标签,程序「学习」标签和数据之间的映射关系 • 无监督式学习:无标签 • 半监督式学习:少量有标签+大量无标
相关 使用PCA降维实现鸢尾花数据特征可视化
1. 调用库和模块 import matplotlib.pyplot as plt from sklearn.datasets import load_i
相关 【数据挖掘】鸢尾花分析实验与数据降维
鸢尾花分析实验与数据降维 相关性分析 特征工程-特征降维 低方差特征过滤 相关系数 皮尔逊相关系数(Pearso
相关 【ML算法】无监督学习——K-means聚类
前言 这一系列文章将介绍各种机器学习算法,部分算法涉及公示推导,我的博客中有另一个板块介绍基于python和R实现各种机器学习算法,详情见置顶的目录。 K-means
相关 无监督:聚类与改进聚类详解
聚类: 聚类就是将相似的对象聚在一起的过程。如总统大选,选择那部分容易转换立场的表决者,进行针对性的宣传,可以扭转局势。 聚类将相似的对象归到同一簇中,相似取决于相似度
相关 K-Means(聚类)---无监督学习
1、介绍 聚类分析是在数据中发现数据对象之间的关系,将数据进行分组,组内的相似性越大,组间的差别越大,则聚类效果越好。 2、原理 对于给定的样本集,按照样本
相关 无监督式学习-鸢尾花数据降维and聚类
一. 使用PCA(主成分分析)进行降维实现数据可视化 降维的任务是要找到一个可以保留数据本质特征的低维矩阵来表示高维数据, 通常用于辅助数据可视化的工作. 下面我们使用
还没有评论,来说两句吧...