发表评论取消回复
相关阅读
相关 accuracy、precision、recall、宏平均、微平均
1、accuracy、precision、recall TP:实际为正,且划分为正的样本数,真正数。 FP:实际为负,且划分为正的样本数,假正数。 TN:实际为负,且
相关 Python 深度学习目标检测评价指标 :mAP、Precision、Recall、AP、IOU等
目标检测评价指标: 准确率 (Accuracy),混淆矩阵 (Confusion Matrix),精确率(Precision),召回率(Recall),平均正确率(AP)
相关 信息检索的评价指标(Precision, Recall, F-score, MAP)
之前写过一篇blog叫做机器学习实战笔记之非均衡分类问题:[http://blog.csdn.net/lu597203933/article/details/38666699]
相关 python绘制precision-recall曲线、ROC曲线
基础知识 TP(True Positive):指正确分类的正样本数,即预测为正样本,实际也是正样本。 FP(False Positive):指被错误的标
相关 recall和precision的理解
假设一共有10篇文章,里面4篇是你要找的。根据你某个算法,你认为其中有5篇是你要找的,但是实际上在这5篇里面,只有3篇是真正你要找的。 那么你的这个算法的precision是
相关 机器学习评价标准,precision与recall通俗理解
recall与precision区别: (1)recall,召回率又名查全率,与漏报率有关,(漏报率,FN,即错误的预测为负样本,换句话说,将实际为正的样本预测为负),详情参
相关 Precision, Recall, F-score, ROC, AUC
一、正样本和负样本 正样本就是使系统得出正确结论的例子,负样本相反。 比如你要从一堆猫狗图片中检测出狗的图片,那么狗就是正样本,猫就是负样本;反过来你若是想检测出猫的
相关 AUC、Precision、Recall、F-measure、Accuracy
机器学习常见评价指标:AUC、Precision、Recall、F-measure、Accuracy 主要内容 AUC的计算
相关 深度学习中的参数:recall precision mAP
[http://tarangshah.com/blog/2018-01-27/what-is-map-understanding-the-statistic-of-choice
相关 目标检测问题中的“召回率Recall”、“精确率Precision”
继上篇mAP之后,想彻底梳理一下基本概念,今天来搞一搞“召回率”、“精确率” 几个概念 假设有一个测试集中包含了n个小猫和小狗的图片,我们的目标是找出所有的猫。目标是:
还没有评论,来说两句吧...