发表评论取消回复
相关阅读
相关 《Bounding Box Regression with Uncertainty for Accurate Object Detection》论文笔记
码地址:[KL-Loss][] 1. 概述 > 导读:这篇文章对于数据集中标注不明确的标注框给检测带来的影响做了研究,其中原有的检测框的回归函数Smooth L1...
相关 《Matrix Nets:A New Deep Architecture for Object Detection》论文笔记
代码地址:暂无 1. 概述 > 导读:这篇文章提出的新的目标检测网络叫做Matrix Nets(该方法是基于关键点的检测算法),这篇文章比较有意思的一点是充分考虑了CN
相关 Bounding Box Regression with Uncertainty for Accurate Object Detection阅读笔记
![在这里插入图片描述][watermark_type_ZmFuZ3poZW5naGVpdGk_shadow_10_text_aHR0cHM6Ly9ibG9nLmNzZG4ub
相关 Receptive Field Block Net for Accurate and Fast Object Detection CVPR2017论文翻译
论文:Receptive Field Block Net for Accurate and Fast Object Detection (CVPR2017) 链接:https
相关 《PIoU Loss:Towards Accurate Oriented Object Detection in Complex Environments》论文笔记
参考代码:[piou][] 1. 概述 > 导读:旋转矩形框的引入可以更好贴合目标的轮廓,一般是在水平矩形框的基础上添加一个旋转变量,之后通过诸如smooth L1损失
相关 《Residual Bi-Fusion Feature Pyramid Network for Accurate Single-shot Object Detection》论文笔记
参考代码:无 1. 概述 > 导读:在检测任务中一般会引入FPN增强在不同尺度下网络的检测性能,但是只通过top-down的FPN网络是很难去重建由于特征图的漂移(水平
相关 《IoU-Net: Acquisition of Localization Confidence for Accurate Object Detection》论文笔记
1. 前言 目前基于CNN的目标检测器是依赖于边界框回归与非极大值抑制去定位目标。但是预测框的分类反映的是分类的置信度,并不能反应定位的置信度,这就会掉之预测框在回归的过
相关 《Receptive Field Block Net for Accurate and Fast Object Detection》论文笔记
1. 概述 现有的高性能检测方法是基于CNN网络的,例如ResNet-101、Inception,这些检测方法拥有很强大的表达能力,但是具有较大的计算开销。那么把特征提取
相关 《CenterNet: Keypoint Triplets for Object Detection》论文笔记
代码地址:[CenterNet][] 1. 概述 > 导读:这篇博客中讲到的CenterNet是由中科院、牛津大学以及华为诺亚方舟实验室联合提出的One-stag目标检
相关 《Relation Networks for Object Detection》论文笔记
代码地址:[Relation-Networks-for-Object-Detection][] 1. 概述 > 一直以来都认为对检测目标之间的联系进行建模会帮助提升目标
还没有评论,来说两句吧...