发表评论取消回复
相关阅读
相关 卷积神经网络CNN、感受野、边缘检测、卷积层(零填充padding、步长、多通道卷积、多卷积核)、池化层Pooling、全连接层
![20191009191333910.png][][日萌社][Link 1] [人工智能AI:Keras PyTorch MXNet TensorFlow Paddle
相关 卷积神经网络-卷积层
卷积层的一些性质: ( 1 )输入数据体的尺寸是 W1 \ H1 \ D1。 ( 2 ) 4 个超参数:滤波器数K, 滤波器 空间 尺寸F, 滑动
相关 卷积原理:几种常用的卷积(标准卷积、深度卷积、组卷积、扩展卷积、反卷积)
0、标准卷积 默认你已经对卷积有一定的了解,此处不对标准卷积细讲。 举个例子,假设有一个`3×3`大小的卷积层,其输入通道为`16`、输出通道为`32`。 那么一般
相关 2020-12-09 深度学习 卷积核/过滤器、特征图(featue map)、卷积层
概念学习:卷积核/过滤器、特征图(featue map)、卷积层 作为基础学习,建议先看一看电子版的: \[美\] Michael Nielsen著,Xiaohu Zh
相关 吴恩达-深度学习-卷积神经网络-多层卷积 笔记
你已经知道如何对二维图像做卷积了,现在看看如何执行卷积不仅仅在二维图像上,而是三维立体上。 我们从一个例子开始,假如说你不仅想检测灰度图像的特征,也想检测RGB彩色图像
相关 卷积原理:几种常用的卷积(标准卷积、深度卷积、组卷积、扩展卷积、反卷积)
转载自:[https://blog.csdn.net/chenyuping333/article/details/82531047?utm\_source=blogxgwz6]
相关 深度学习--简述卷积层如何检测物体边缘原理
对计算机视觉与深度学习有所了解的同学应该知道图像卷积可以识别出物体,在神经网络的前几层,识别出物体最基础的例如垂直或是水平的边缘。在之后的隐藏层慢慢可以识别出物体的部分,直到最
相关 卷积层尺寸的计算原理
![20190319144740248.png][] [20190319144740248.png]: /images/20220302/6f609e4fb98f4f
相关 深度学习实战(四)——TensorFlow卷积层的定义方式
一、最底层的方式:`tf.nn` 模块 `tf.get_variable:`声明各种权重和偏置变量,该函数在变量没有定义时会创建变量,如果变量已经定义好了则会获取该变量
还没有评论,来说两句吧...