发表评论取消回复
相关阅读
相关 TensorFlow+FaceNet+GPU训练模型(超详细过程)(四、模型训练)
在所有的数据都处理完了之后,接下来就可以进行模型的训练了。 在Github上FaceNet项目的介绍中有softmax和论文中提到的三元损失训练triplet两种方式,这边简
相关 TensorFlow+FaceNet+GPU训练模型(超详细过程)(三、GPU配置)
ok,fine,终于到了最关键的时刻了,配置GPU GPU是什么玩意儿我觉得不必多说,只要知道它是可以让你在计算机视觉任务中一步封神的传说级道具就行了,但这个爆率,非常的低,
相关 Tensorflow加载预训练模型和保存模型(ckpt文件)以及迁移学习finetuning
使用tensorflow过程中,训练结束后我们需要用到模型文件。有时候,我们可能也需要用到别人训练好的模型,并在这个基础上再次训练。这时候我们需要掌握如何操作这些模型数据。看完
相关 Tensorflow:模型训练tensorflow.train
深度学习训练中的几个概念 (1)batchsize:批大小。在深度学习中,一般采用SGD训练,即每次训练在训练集中取batchsize个样本训练;一次Forword运算以
相关 用TensorFlow训练第一个模型
简述 下面有非常详细的代码注释 > 学习自莫凡大神给的demo > [https://morvanzhou.github.io/tutorials/machine-
相关 Tensorflow 模型保存与恢复(3)保存模型到单个文件中
保存模型到单个.pb文件中 前面两篇介绍了使用Saver 和SavedModel保存模型: [Tensorflow 模型保存与恢复(1)使用tf.train.Save
相关 TensorFlow训练过程中保存模型
保存模型 在反向传播中,如果想每隔一定的轮数将模型保存下来,可以用下面的方法。 1)首先,实例化saver对象 saver = tf.train.Saver(
相关 TensorFlow和Keras的模型保存及载入模型参数继续训练
TensorFlow 在TensorFlow中,模型的持久化保存和加载主要通过Saver()。 在初次训练之后调用如下的save函数保存,然后,在预测前,或者在继续训
相关 Tensorflow:模型保存和服务
tensorflow模型保存和使用 Tensorflow的保存分为四种: 1. checkpoint模式; 2. saved\_model模式(包含pb文件和var
还没有评论,来说两句吧...