发表评论取消回复
相关阅读
相关 【机器学习】对比学习(contrastive learning)
SSL 中使用的最古老和最受欢迎的技术之一是对比学习,它使用“正”和“负”样本来指导深度学习模型。此后,对比学习得到了进一步发展,现在被用于完全监督和半监督的环境中,并提...
相关 深度学习算法中的集成学习(Ensemble Learning)与深度学习的结合
![1a125042fd174cf0b44944c359147ee7.png][] 目录 深度学习算法中的集成学习(Ensemble Learning)与深度学习的结合
相关 机器学习_集成学习(Ensemble Learning):随机森林(RF)、GBDT(迭代决策树)、提升算法、Adaboost
这两天学的是随机森林 、提升算法、GBDT、Adaboost算法,今天导师让我们没事的时候看看论文,学习机器学习和深度学习,现在学习这些知识终于成为了“合法”(前些天都是自己抽
相关 机器学习之Ensemble(Bagging、AdaBoost、GBDT、Stacking)
集成学习,其实就是通过构建并结合多个学习器来完成学习任务。 前面刚学的随机森林就是一种集成学习方法,随机森林(广义上的)就是由多个分类器,比如决策树,SVM等集合而成的一种模型
相关 机器学习——深度学习(Deep Learning)
Deep Learning是机器学习中一个非常接近AI的领域,其动机在于建立、模拟人脑进行分析学习的神经网络,最近研究了机器学习中一些深度学习的相关知识,本文给出一些很有用的资
相关 集成学习(ensemble Learning)
集成学习(ensemble Learning)通过构建并结合多个学习器来完成学习任务,有时也被称为多分类器系统(multi-classifier system)、基于委员会的学
相关 [机器学习] 集成学习 stacking
首先我们先训练多个不同的模型,然后把之前训练的各个模型的输出作为输入来训练一个新的最终分类器的模型,以得到一个最终的输出。但在实际中,我们通常使用logistic回归作为组合策
相关 集成学习 ensemble learning
Stacking 首先我们先训练多个不同的模型,然后把之前训练的各个模型的输出作为输入来训练一个新的最终分类器的模型,以得到一个最终的输出。 但在实际中,我们通常使用
相关 机器学习-集成学习(Ensemble Learning)
集成学习是训练一系列学习器,并使用某种结合策略把各个学习结果进行整合,从而获得比单个学习器更好的学习效果的一种方法。如果把单个学习器比作一个决策者的话,集成学习的方法就相当于多
还没有评论,来说两句吧...